
Page 1

ComDrvS7 V6.2X
for LOGO!®, S7-1500®, S7-1200®, S7-300®, S7-400®

,

VIPA 100V/200V/300S/SLIO

Documentation
Developers Guide

July 2015

With examples and hints to
Visual C++ , Visual-Basic, Visual-C#, .Net, Delphi and C++ Builder

MHJ-Software GmbH & Co. KG
www.mhj.de

LOGO!®, STEP®, SIMATIC®, S7-1500®, S7-1200®, S7-300®, S7-400® are registered trademarks
of SIEMENS AG.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 2

1 General information about ComDrvS7 Page 8

1.1 Hardware requirements for the different communication channels Page 10

1.1.1 RS232/USB communications Page 10

1.1.2 Communications via MHJ-Netlink or MHJLink++ (incl. routing) Page 10

1.1.3 TCP/IP-direct communications (incl. routing) Page 10

1.1.4 TCP/IP-NETlink PRO communications (incl. routing) Page 10

1.1.5 SIMATIC®-NET communications (inkl. Routing) Page 11

1.2 ComDrvS7 installation Page 11

1.3 Changes with respect to older versions of the ComDrvS7 DLL Page 12

1.3.1 From V6.25: implementation of the S7-1500® family Page 12

1.3.2 From V6.23: A 64-bit DLL is available Page 12

1.3.3 From V6.2: implementation of the LOGO!® family Page 12

1.3.4 From V6.1; implementation of the S7-1200® family Page 12

1.3.5 From V6.0: speed optimised protocols for read and write functions Page 12

1.3.6 From V6.0: new functions MixRead and MixWrite Page 12

1.3.7 From V6.0: read and write functions do not require a password Page 12

1.3.8 From V6.0: write DBs into WLD-files Page 12

1.3.9 From V6.0: read DBs from WLD-files and transfer them to the CPU Page 12

1.3.10 From V6.0: function to copy RAM to ROM Page 13

1.3.11 From V6.0: read/write the time and date of the CPU Page 13

1.3.12 From V6.0: change the operating mode of the CPU Page 13

1.3.13 From V5.0: reading identification data of a CPU (e.g. CPU serial number) Page 13

1.3.14 From V5.0: reading the status from the fault LEDs of a CPU Page 13

1.3.15 From V5.0: password may be transferred to a password-protected CPU Page 13

1.3.16 From V5.0: reading DB-data from different DBs in a single function call Page 13

1.3.17 From V4.0: routing support Page 14

1.3.18 From V4.0: additional communication path SIMATIC®-NET Page 14

1.3.19 From V4.0: support for remote maintenance access via the Siemens Teleservice Page 14

1.3.20 From V3.6: additional communication path NETLink PRO (TCP/IP) Page 14

1.3.21 From V3.5: additional communication path TCP/IP-direct Page 14

1.3.22 From V3.x: Individual read functions ate not limited to 128 bytes (64 words) Page 14

1.3.23 From V3.x: new function to query the opstatus of the CPU Page 14

1.3.24 From V3.x: new functions to convert Real-, DINT and INT data types Page 15

1.3.25 From V3.x: Byte buffers may be transferred to read and write functions that access byte
operands

Page 15

1.3.26 From V2.5: managing multiple connections Page 15

1.3.27 From V2.5: TCP/IP communication with the aid of the MHJ-NetLink Page 15

2 Different versions of ComDrvS7 Page 16

2.1 Differences between the Lite version and the full version Page 16

2.2 The multiple license Page 16

2.3 Particularity of the MICRO version Page 16

2.4 Combination of the versions Page 16

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 3

2.5 Extended Version Page 16

2.6 License Agreement and Terms of Use for the ComDrvS7 DLL Page 17

3 Information on using ComDrvS7 with the various programming
languages

Page 18

3.1 Windows CE Page 18

3.2 Visual C++ Page 19

3.2.1 What must be considered? Page 19

3.2.2 Example for VC++ Page 19

3.3 C++ Builder Page 20

3.3.1 What must be considered? Page 20

3.3.2 C++ Builder example Page 20

3.4 Visual Basic Page 21

3.4.1 What Must Be Considered? Page 21

3.4.2 Visual Basic examples Page 21

3.5 Visual C# Page 22

3.5.1 Visual C# examples Page 22

3.6 Delphi Page 23

3.6.1 What must be considered? Page 23

3.6.2 Delphi examples Page 23

4 Switching from an older versions of ComDrvS7 Page 24

5 General ComDrvS7 procedure Page 25

5.1 Change to another access route to the CPU Page 26

5.2 Response to an error occurring in the open functions Page 26

5.3 Reaction to an error that occurs in the open functions Page 26

6 Description of the different functions Page 27

6.1 Basic information explaining the different functions of ComDrvS7 Page 27

6.2 The function: MPI_A_GetDLLError or MPI_A_GetDLLErrorEng Page 27

6.3 The function: MPI6_OpenRS232 Page 28

6.4 The function: MPI6_OpenNetLink Page 30

6.5 The function: MPI6_OpenTcpIp Page 32

6.6 The function: MPI6_OpenTcpIp_S71500 Page 34

6.7 The function: MPI6_OpenTcpIp_S71500Ext Page 35

6.8 The function: MPI6_OpenTcpIp_S71200 (Also in MICRO version) Page 36

6.9 The function: MPI6_OpenTcpIp_Logo (Only MICRO-version) Page 37

6.10 The function: MPI6_Open_NetLinkPro_TCP_AutoBaud Page 38

6.11 The function: MPI6_Open_NetLinkPro_TCP_SelectBaud Page 40

6.12 The function: MPI6_Open_SimaticNet (only 32-bit, not CE) Page 43

6.13 The function: MPI6_CloseCommunication Page 45

6.14 The function: MPI6_GetAccessibleNodes Page 46

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 4

6.15 The function: MPI6_SetRoutingData Page 48

6.16 The function: MPI6_ConnectToPLC Page 50

6.17 The function: MPI6_ConnectToPLCRouting Page 52

6.18 Routing example Page 53

6.18.1 Initialisation by means of a NetLink PRO Page 54

6.18.2 Routing data transfer Page 54

6.18.3 Call the function MPI6_ConnectToPLCRouting Page 55

6.18.4 Conclusion as to the routing example Page 56

6.19 The function: MPI6_ReadByte Page 57

6.20 The function: MPI6_ReadWord Page 60

6.21 The function: MPI6_ReadDword Page 62

6.22 The function: MPI6_ReadTimer (not in the Lite-version) Page 64

6.23 The function: MPI6_ReadCounter (not in the Lite-version) Page 66

6.24 The function: MPI6_MixRead_2 Page 68

6.25 The function: MPI6_WriteBit_2 Page 71

6.26 The function: MPI6_WriteByte Page 73

6.27 The function: MPI6_WriteWord Page 75

6.28 The function: MPI6_WriteDword Page 77

6.29 The function: MPI6_WriteTimer (Not in Lite-Version) Page 79

6.30 The function: MPI6_WriteCounter (Not in Lite-Version) Page 81

6.31 The function: MPI6_MixWrite_2 Page 83

6.32 The function: MPI6_WriteBit (not in the Lite-version) Page 86

6.33 The function: MPI6_WriteDBFromWldToPlc (not in the Lite- and CE-versions) Page 88

6.34 The function: MPI6_ReadDBFromPlcAndWriteToWld (Not in the Lite- and
CE-Version)

Page 90

6.35 The function: MPI6_GetDBNrInWldFile (Not in the Lite- and CE-Version) Page 92

6.36 The function: MPI6_ReadPlcClock Page 94

6.37 The function: MPI6_WritePlcClock Page 96

6.38 The function: MPI6_CopyRamToRom Page 98

6.39 The function: MPI6_PLCHotRestart or MPI6_CPUWiederanlauf Page 100

6.40 The function: MPI6_PLCWarmRestart or MPI6_CPUNeustart Page 101

6.41 The function: MPI6_SetPLCToStop Page 102

6.42 The function: MPI6_IsPLCInRunMode Page 103

6.43 The function: MPI6_GetSystemValues Page 105

6.44 The function: MPI6_GetLevelOfProtection Page 107

6.45 The function: MPI6_GetOrderNrPlc Page 109

6.46 The function: MPI6_CanPlcSendIdentData Page 111

6.47 The function: MPI6_GetPlcIdentData Page 112

6.48 The function: MPI6_GetPlcErrorLED Page 115

6.49 The function: MPI6_IsPasswordRequired Page 117

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 5

6.50 The function: MPI6_SendPasswordToPlc Page 118

6.51 The function: MPI6_GetCountDB Page 120

6.52 The function: MPI6_GetDBInPlc Page 122

6.53 The function: MPI6_GetLengthDB Page 124

6.54 The function: MPI6_ChangeProtocolTypeForV5Functions Page 126

6.55 The function: MPI6_GetVersionComDrvS7 Page 128

6.56 The function: MPI_A_RealFromByteBuffer or MPI6_RealFromByteBuffer Page 128

6.57 The function: MPI_A_RealFromWordBuffer or MPI6_RealFromWordBuffer Page 129

6.58 The function: MPI_A_IntFromByteBuffer or MPI6_IntFromByteBuffer Page 129

6.59 The function: MPI_A_IntFromWordBuffer oder MPI6_IntFromWordBuffer Page 130

6.60 The function: MPI_A_DIntFromByteBuffer oder MPI6_DIntFromByteBuffer Page 130

6.61 The function: MPI_A_DIntFromWordBuffer or MPI6_DIntFromWordBuffer Page 131

6.62 The function: MPI_A_RealToWordBuffer or MPI6_RealToWordBuffer Page 131

6.63 The function: MPI_A_RealToByteBuffer or MPI6_RealToByteBuffer Page 132

6.64 The function: MPI_A_IntToByteBuffer or MPI6_IntToByteBuffer Page 132

6.65 The function: MPI_A_DIntToByteBuffer or MPI6_DIntToByteBuffer Page 133

6.66 The function: MPI_A_DIntToWordBuffer oder MPI6_DIntToWordBuffer Page 133

6.67 The function: MPI6_BcdToDecimal Page 134

6.68 The function: MPI6_DecimalToBcd Page 134

7 Accessing several nodes using a serial port. Page 135

7.1 Executing the initialisation Page 135

7.2 Establish communications with the CPUs Page 136

7.3 Read data from the CPU Page 137

7.4 Termination of communications and removal of the communication instances Page 138

7.5 Notes on the example Page 138

8 Which conditions apply when using a MHJ-NetLink? Page 139

8.1 MHJ-NetLink configuration Page 139

8.2 Executing the initialisation Page 141

8.3 Establish communications Page 142

8.4 Read data Page 142

8.5 Terminate communications Page 143

8.6 Notes on the example Page 143

9 Which conditions apply when using a MHJ-NetLink PRO? Page 144

9.1 Configuration of a NetLink PRO Page 144

9.2 The two initialisation functions of the NETLink PRO Page 145

10 What conditions must be considered when using a SIMATIC®-NET? Page 146

11 Remote access procedure via telephone line using ComDrvS7 Page 147

12 General notes on the ComDrvS7-DLL Page 148

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 6

12.1 What must be considered when a CPU is accessed by multiple communication
instances?

Page 148

12.2 What must be considered when the next ComDrvS7 DLL or other applications are
executed on the PC?

Page 148

12.3 When is it possible to issue calls to the functions of the individual communication
instances in different threads?

Page 148

13 Error messages Page 149

14 Access to operands of a LOGO!® from SIEMENS Page 152

14.1 Digital inputs Page 152

14.1.1 Addressing the digital inputs Page 152

14.2 Analog inputs Page 153

14.2.1 Addressing the analog inputs Page 153

14.3 Digital outputs Page 154

14.3.1 Addressing the digital outputs Page 154

14.4 Analog ouputs Page 155

14.4.1 Addressing the analog ouputs Page 155

14.5 Digital Flags Page 155

14.5.1 Addressing the digital flags Page 155

14.6 Analog Flags Page 156

14.6.1 Addressing the analog flags Page 156

14.7 Analog and digitale network-inputs and network-outputs Page 157

15 Configuration of the LOGO's IP address Page 158

15.1 Special behaviors of a LOGO!® 0BA8 (and higher) Page 158

15.2 Configuration of the Ethernet connection by means of the LOGO programming
software

Page 159

16 Required settings in a PLC 1500® (and S7-1200® from firmware
version 4) from Siemens

Page 162

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 7

1 General information about ComDrvS7

Brief description

The ComDrvS7 DLL enables you to transfer data to and from Siemens S7 series
1200/1500/300/400 PLCs and S7-compatible CPUs of the series VIPA 100V/200V/300V/300S.
You can establish a communication link using MPI, Profibus-DP (with NetLink, NETLink PRO or
SIMATIC®-NET) or TCP/IP. ComDrvS7 also supports the data-transfer to LOGO!® from 0BA7 or
higher.

As of version 6.25 the PLC-family S7-1500® from Siemens is supported.
One of the functions "MPI6_OpenTcpIp_S71500" or "MPI6_OpenTcpIp_S71500Ext" is required
to communicate with a PLC-1500.
Please read the chapter "Required settings in a PLC 1500 from Siemens" for the important
hardware settings!

As of version 6.23 a 64 bit version of ComDrvS7 is available. You can use this DLL for 64 bit
applications, on a 64 bit OS. A 64 bit application is necessary, if the limits of 32 bit applications
become a problem. For example files become greater then 4 GB. The disadvantage of 64 bit
applications is, that they only run on a 64 bit OS., e.g. Windows 7-64bit.
A 32 bit applications can be used on a 32 bit and 64 bit OS.

As of version 6.20, you can transfer data to and from a Siemens LOGO! (0BA7) via ethernet.

The DLL can be integrated into Windows applications to communicate with the PLC. You need
a PC/MPI cable (RS232, USB), the NetLink or NETLink PRO (TCP/IP) to communicate. You
can also communicate via an Ethernet-CP or an Ethernet interface that is integrated into the
CPU. In this case, the units communicate via a standard Ethernet cable.

SIMATIC®-NET is supported as of version 4, provided that the drivers were installed on the PC.
In this case, it is possible, for example, to address CPs 5512, 5611 and the Siemens USB-MPI
adapter. In the presence of Siemens’ Teleservice V6, ComDrvS7 can also acquire data via
telephone lines (e.g. using the Teleservice II-Adapter).
As of version 4, a CPU can be addressed using routing. This means that the CPU to be
addressed must not necessarily be connected directly to the PC, cince the request can be
routed to the CPU via different bus systems.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 8

The DLL supports the following operations:

Read/write bytes within address ranges I, Q, M and DB (I, Q, M is not
available in the Lite version). You do not need the password for a pass-
word protected CPU.
Read/write words within address ranges I, Q, M and DB (I, Q, M is not
available in the Lite version). You do not need the password for a pass-
word protected CPU.
Read/write double words within address ranges I, Q, M and DB (I, Q, M is
not available in the Lite version). You do not need the password for a
password protected CPU.
Read/write timers and counters (not supported by the Lite version).
Reading DBs from the CPU and saving them in a WLD file (not supported
by the Lite version).
Reading DBs from a WLD file and transferring them into the CPU (not
supported by the Lite version).
Copy RAM to ROM to save current DB values.
Determine and change the operating mode of the CPU (RUN, STOP
change).
Read and modify the time of day from the CPU.
Read the number of DBs that are available in the PLC
Determine the DB numbers that are available in the PLC
Determine the length of DBs in bytes
Read the serial number of the CPU and of an existing MMC
Read the status of error-LEDs SF, BF1 and BF2 of a CPU
Query the need for a password to access a CPU
Pass a password to the CPU to provide unlimited access to a password-
protected CPU.
Identify system areas
Determine the position of the operating mode switch and protection levels
Read the order number from the CPU
Determine accessible nodes on the MPI/DP network
Functions to convert REAL, DINT and INT operands from WORD or BYTE
buffers.
Other protocols on request.

A 32-bit and 64-bit version of the DLL is available.

System requirements

Platform: WinXP, Vista, Win7 (32/64 bit), Win8 (32/64 bit)

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 9

1.1 Hardware requirements for the different communication
channels

1.1.1 RS232/USB communications

You need a PC/MPI cable to provide the connection between the PC and
the S7 series 300/400 PLC. You may also use a USB-MPI cable if the USB driver has created a
virtual serial interface.
Order numbers of the interfacing cables:

MPI adapter RS232: M007.001
MPI adapter USB: M007.005

1.1.2 Communications via MHJ-Netlink or MHJLink++ (incl. routing)

In this case, MHJ-NetLink connects the hub/switch to the S7-PLC. You require an additional
crossover cable if you want to insert the MHJ-NetLink directly into the network adapter of a PC.
Order numbers of the interface cables:
MHJ-NetLink for MPI and Profibus-DP: M007.010

1.1.3 TCP/IP-direct communications (incl. routing)

If the S7 PLC is equipped with an Ethernet-CP or if the CPU has an integrated Ethernet (or
Profinet) port, then you may also establish the communication link using these resources. A
conventional Ethernet cable provides the connection between the PC and the CP. The PC and
the CP can also be linked by means of a hub/switch. Both, the PC and the CP must be in the
same subnet.

1.1.4 TCP/IP-NETlink PRO communications (incl. routing)

In this case, NETLink PRO is used to connect the hub/switch to the S7-PLC. You require an

additional crossover cable if you want to insert the NETLink PRO directly onto the network
adapter of a PC.
In comparison to the standard NetLink, NETLink PRO has the advantage that it is optimized
with respect to remote maintenance via the Internet. The communication speed of the NETLink
PRO is higher than that of the standard NetLink.
Order number of the interface cable:
NETLink PRO (Ethernet) for MPI and Profibus-DP: M007.020

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 10

1.1.5 SIMATIC®-NET communications (inkl. Routing)

TheSIMATIC®-NET drivers must have been installed on the PC. Under these circumstances the
Siemens interface adapter (e.g. CP5512, CP5611 USB-MPI adapter) may be used. When the
Teleservice feature V6 or higher is available, it is also possible to operate remotely via phone
line. Here you can make use of the Teleservice Adapter II or compatibles (see www.mhj.de).
You can also order the Teleservice software using www.mhj.de.
This communication path is only available with the 32-bit DLL.

1.2 ComDrvS7 installation

The driver is supplied on CD-ROM or you may use a download link.

You can download the current version from www.mhj.de at any time.

After installation, all DLLs are available on the hard disk. These differ in the programming
languages into which they may be integrated. Please make absolutely sure that you use the
DLL that is supplied for your programming language.
A DLL that has not been activated automatically reverts to a demo version.

The demo version displays a demo message with every open-function. This message requires
confirmation. Subsequently, the demo message will appear at certain intervals or when you
execute the open-function.

Please read the file README.TXT located on the CD for additional
information.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 11

1.3 Changes with respect to older versions of the ComDrvS7 DLL

1.3.1 From V6.25: implementation of the S7-1500® family

From version 6.25, the read and write functions may be applied to the S7-1500® operands of
the type E, A, M and DB. For this purpose, the special initiation function
"MPI6_OpenTcpIp_S71500" or "MPI6_OpenTcpIp_S71500Ext" must be executed.
The different functions are associated with explicit details to indicate which function may be
used for the S7-1500®.

1.3.2 From V6.23: A 64-bit DLL is available

1.3.3 From V6.2: implementation of the LOGO!® family

From version 6.2, the read and write functions may be applied to the LOGO!® (0BA7) operands
of the type I, Q, M and VM. For this purpose, the special initiation function
"MPI6_OpenTcpIp_Logo" must be executed.

The access to a LOGO!® is only possible in the MICRO-Version of ComDrvS7.

1.3.4 From V6.1; implementation of the S7-1200® family

From version 6.1, the read and write functions may be applied to the S7-1200® operands of the
type E, A, M and DB. For this purpose, the special initiation function
"MPI6_OpenTcpIp_S71200" must be executed.
The different functions are associated with explicit details to indicate which function may be
used for the S7-1200®.

1.3.5 From V6.0: speed optimised protocols for read and write functions

As of version 6, speed optimised protocols will be used to read and write operands (E, A, M, T,
Z, DB). As a result, the communication speed is increased significantly in comparison to earlier
versions.

1.3.6 From V6.0: new functions MixRead and MixWrite

The new functions MixRead and MixWrite can read and write different operand types in a single
call. For example, you can read data from different data blocks, clock memory and input values
with a single call of the MixRead. The data requests are automatically optimized by the function
so that duplicate queries, overlaps, etc. are detect automatically.

1.3.7 From V6.0: read and write functions do not require a password

From version 6, you can execute the read and write functions (byte, word and double word)
without knowledge of the CPU password. This means that you can run these functions without
transferring the password to the CPU.

1.3.8 From V6.0: write DBs into WLD-files

From version 6, you can read DBs from the CPU to write them to a WLD-file. This type of file
can then be processed with the S7-programming systems. It is also possible to create a backup
of the DBs on the PC.

1.3.9 From V6.0: read DBs from WLD-files and transfer them to the CPU

From version 6, you can read DBs from a WLD-file and transfer them to the CPU. You can
create a WLD-file using S7 programming systems. This means that we have the option to store,

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 12

among other things, DBs with different settings on the PC and transfer them to the CPU when
required (recipe management and similar).

1.3.10 From V6.0: function to copy RAM to ROM

You can use this function to save process-related data of all the DBs located in the memory of
the CPU into the load memory of the CPU. This means that the data are retained even when
the CPU is re-booted.

1.3.11 From V6.0: read/write the time and date of the CPU

From version 6, you can read the time and the date from a CPU and rewrite it if necessary.

1.3.12 From V6.0: change the operating mode of the CPU

As of version 6, the operating mode of the CPU can be set to RUN or STOP mode.

1.3.13 From V5.0: reading identification data of a CPU (e.g. CPU serial number)

From version 5, the identification data may be read from a CPU. These include:

the serial number of the CPU

the serial number of the MMC in the CPU

The system identification (may be specified by the user when the
hardware of the CPU is being configured)

The location identification (may be specified by the user when the
hardware of the CPU is being configured)

The name of the CPU (may be specified by the user when the
hardware of the CPU is being configured)

The station identification (may be specified by the user when the
hardware of the CPU is being configured)

The data can be read by Siemens S7-300? CPUs with a firmware version 2.6. or higher.
ComDrvS7 has a feature that can be used to determine whether a CPU actually provides the
data.

1.3.14 From V5.0: reading the status from the fault LEDs of a CPU

From version 5, the status of the fault LEDs SF (collective error), BF1 (bus-error 1) and BF2
(bus-error 2) can be read from a CPU. This enables the PC programmer to determine whether
the execution of the PLC program is affected or made impossible by such an error.
The respective error can then be displayed on the PC or the program on the PC can respond
appropriately.

1.3.15 From V5.0: password may be transferred to a password-protected CPU

From version 5, if the CPU features write protection, i.e. write access to the CPU is only
possible using the password, the required password can be transferred to the CPU. ComDrvS7
provides two functions for this purpose. The first function can be used to check whether a
password is required for write access. The second function transfers the password to the CPU
(you must have the correct password for this purpose) to unlock access. The password is
unlocked until the communication link with the CPU is terminated.

1.3.16 From V5.0: reading DB-data from different DBs in a single function call

The two functions MPI_A_MixReadDBByte and MPI_A_MixReadDBWort can be used to read
data from different data blocks using a single function call. For example, these can be used to
read byte 12 from DB10 and byte 0 from DB11. These functions are relevant if the data to be
read are not located in single data block.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 13

1.3.17 From V4.0: routing support

From version 4, the communication paths NetLink, NETLink PRO, TCP/IP-direct and
SIMATIC?-NET support routing. This means that you can access CPUs that have no direct
connection to the PC, provided that they are located on a network that is linked to the CPU,
which is connected to the PC. The benefit is that no single CPU must provide data collection
functions, but instead, that you can access each of the pooled CPUs. Only one CPU is
connected directly to the PC, which forwards the request to the other CPUs. The request may
be routed via different bus systems to the CPU.
The condition is that the routing data was stored in the CPUs when the hardware was
configured.

1.3.18 From V4.0: additional communication path SIMATIC®-NET

SIMATIC®-NET is supported from version 4, provided that the drivers were installed on the PC
(this is true if the Simatic® Manager V5.1 or higher or Teleservice V6 or higher were installed.)
In this case, it is possible, for example, to address CPs 5512, 5611 and the Siemens USB-MPI
adapter.

1.3.19 From V4.0: support for remote maintenance access via the Siemens Teleservice

In the presence of Siemens Teleservice V6, ComDrvS7 can also communicate with a CPU via
the telephone line. This also provides support for the Siemens Teleservice Adapters II.

1.3.20 From V3.6: additional communication path NETLink PRO (TCP/IP)

From Version 3.6, ComDrvS7 can access a CPU using the NETLink PRO. The communication
on the PC side runs via TCP/IP. On the CPUs side, the NETLink PRO for MPI or Profibus-DP
may be employed. In this case, all baud rates up to 12 Mbaud are supported.
The advantage of the NETLink PRO over the NetLink is that this can manage a max. of 4 PC
connections. The NETLink PRO also provides automatic detection of the baud rate for the MPI
or Profibus-DP.

1.3.21 From V3.5: additional communication path TCP/IP-direct

From Version 3.5, ComDrvS7 can also access a CPU with Ethernet-CP or a CPU with an

integrated Ethernet-interface. The function "MPI_A_Einleitung_TCP_IP_Direct " was

implemented for this purpose.

1.3.22 From V3.x: Individual read functions ate not limited to 128 bytes (64 words)

From version 3, the read functions of the ComDrvS7-DLL are no longer limited to 128 bytes per
call. This means, for instance, that it is possible to request 200 clock memories in a single call.

1.3.23 From V3.x: new function to query the opstatus of the CPU

From version 3, ComDrvS7-DLL includes the function MPI_A_IstCPUInRun. This function can
be used to determine whether the status of the connected CPU is RUN.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 14

1.3.24 From V3.x: new functions to convert Real-, DINT and INT data types

From version 3, the ComDrvS7-DLL contains auxiliary functions to generate Real, DINT and
INT numbers from BYTE or WORD buffers. Furthermore, REAL, INT and DINT numbers may
be saved to BYTE or WORD buffers.

1.3.25 From V3.x: Byte buffers may be transferred to read and write functions that
access byte operands

From version 3, the status and control buffers of the read/write functions that access the data
type BYTE was changed, provided that the functions accessed the byte operands. In previous
versions, the buffers have data type WORD. The data type of the buffer being transferred must
be changed if the ComDrvS7-DLL is used in applications that were created with an earlier
version. In this case, the effort can be minimised by copying the current WORD buffer into a
BYTE buffer before the call to the DLL function (for the write functions). For read functions, the
BYTE buffer can be copied to the existing WORD buffer after the call to the DLL function.
In general, however, the change should not present a problem.
The change was necessary to improve the usability of the above-mentioned conversion
functions.

1.3.26 From V2.5: managing multiple connections

From version 2.5, the DLL has capabilities to manage multiple connections.

Example 1:
Serial port COM1 of a CPU is connected to MPI address 2. Serial port COM2 of a CPU is
connected to MPI address 3.
Communications may be established with both CPUs. Then you can perform actions with the
CPUs without interrupting the communication link with the other CPU.

Example 2:
Serial port COM1 is connected to a MPI network with 2 CPUs. The COM1 port can be used to
establish and maintain a single connection to the CPUs. Then you can perform actions with the
CPUs without interrupting a communication link with the other CPU.

Both sample programs "MPI V25 Demo Single-Thread" and "Demo V25 MPI Multi-Thread"
illustrate these options.

1.3.27 From V2.5: TCP/IP communication with the aid of the MHJ-NetLink

From version 2.5, the DLL can establish a connection with a S7-CPU via TCP/IP. This requires
the MHJ-NetLink. This is connected to a hub/switch or directly into the network adapter of a PC
(using a crossover cable).
The main advantage of this connection is the speed, which is significantly higher than that of
the serial connection.

Important note:
Other processes running on the PC may lead to communication errors, because the response
times of MPI-connection cannot be met. To avoid this situation, the communication mode must
be programmed in a thread with the priority "THREAD_PRIORITY_TIME_CRITICAL".

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 15

2 Different versions of ComDrvS7

2.1 Differences between the Lite version and the full version

A so-called Lite-Version is available for ComDrvS7.
The Lite version comprises a multi-user license (developer license). This version only provides
access to data areas located within the data blocks. Both, reading and writing of data is
possible.

The Lite version cannot be used to access other operand areas (e.g., clock memories, inputs,
outputs, etc.). If it is necessary to program this type of access, the functions will return the
corresponding error (see the table of error codes).

Any other function, such as the conversion functions, the function to determine accessible
nodes, etc., may also be executed in the Lite version.
The explanation in respect of each function indicates whether this is not available in the Lite
version or the restrictions that apply when it is used in the Lite version.

2.2 The multiple license

The multiple license can be used any number of your own projects/systems. The company
name of the licensee is specified during the registration.
The multiple licence is for one developer.

Please read the relevant paragraphs of the licensing agreement.

2.3 Particularity of the MICRO version

With the MICRO version of ComDrvS7 you have access to plc families S7-1200® and LOGO!®

(0BA7 or higher). The MICRO version is a multiple license.

2.4 Combination of the versions

If you are owner of a multiple-licence of ComDrvS7 and you want to access to a LOGO!®, you
can buy the MICRO licence and extend the functionality.
You need to execute the function "MPI6_ActivateComDrvS7" twice. First with the activation
code from the multiple licence. And a second time with the activation code of the MICRO
version.

2.5 Extended Version

The extended version contains functions to read and write all the blocks inside a S7-300/400.
So you can implement backup and restore functions in your own applications.
Please read the "ComDrvS7-V6-Extended-English.pdf" for detailed informations about the
extended functions.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 16

2.6 License Agreement and Terms of Use for the ComDrvS7 DLL

Please read the following license agreement carefully and thoroughly before you use the "ComDrvS7 DLL"
(MPIA32_V**.DLL or MPIA64_V**.DLL) on your computer. By opening the software package or by using the software
become contractually bound to the terms of the following license agreement. If you do not agree to be bound by
these terms, then do not install the software. In this case, you can return the package immediately after purchase or
after receipt to the manufacturer for a refund of your payments. The software is never sold outright, but it is licensed
for use only. You only receive ownership of storage media (CD) and the manual and any related written documents.

1. The multi-license

The purchase of a ComDrvS7 DLL multi-licenses entitles you to use the DLL in as many projects as necessary
without requiring additional license fees. The DLL may not be sold on its own, but only in conjunction with software
projects.
The registration number must not be disclosed under any circumstances.
The ComDrvS7 multi-license may not be used for software products that are in direct competition with software
products supplied by MHJ-Software. The multi-license of ComDrvS7 may not be used for standard visualization
software. Such projects require that a separate license model MHJ-Software be negotiated.
This license must be specified in writing in the form of a contract. ComDrvS7 may not be distributed with projects
where the driver provides the main functionality.
The multi-licence is for one developer.
Only the company which have purchased the multiple-license, have the right to copy the software products which
includes the ComDrvS7-driver. If the buyer of ComDrvS7 sold his software to an end user and the end user makes
copies of this software, then the end user also needs a multiple licence of ComDrvS7.

Note: The multi-license is a license for one developer.

2. Duration of license
The license is granted for an unlimited time period. The license will automatically be revoked without the need for a
termination if you should violate any provision of this agreement. In the event of a termination, you are obliged to
destroy the software as well as all copies of the software. You may terminate the license agreement at any time by
destroying the Software and all copies thereof.

3. Limited guarantee
For a period of 6 months from date of acquisition, MHJ-Software & Ing.-Büro Weiß guarantee that the software is
essentially free from defect in material and workmanship and that the substantial functions match the accompanying
product manual. In the case of a justified notification of defects, the company reserves the right to carry out repairs
or in the event that the reworking of fails, rescission or reduction at user's choice. Any other warranty, in particular
with regard to the software being suitable for the user's purposes, and for any direct or indirect damages (e.g., loss
of profit, business interruptions) as well as the loss of data or damages that were caused by the restoration of lost
data are expressly excluded, except in cases of proven intent or gross negligence on the part of MHJ-Software &
Ing.-Büro Weiß. In any case, the company’s entire liability shall be limited to the amount that was paid for the
software.

4. Miscellaneous
This license agreement is governed by the laws of the Federal Republic of Germany. In the event that any provision
of this license agreement is rendered wholly or partially invalid, this shall not affect the validity of the remaining
provisions. The invalid provision shall be substituted by one that meets the intent and purpose of the invalid
provision. There are no subsidiary agreements. Any modifications to this license agreement must be in writing. The
same applies to the repeal of this clause.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 17

3 Information on using ComDrvS7 with the various programming
languages

ComdrvS7 can be used with the programming languages C++, C#, VB and Delphi. The
following development environments may be used:

Visual C++ (Microsoft)

C++ Builder (Borland, Codegear, embarcadero)

Visual Basic (Microsoft)

Visual C# (Microsoft)

Delphi (Borland , Codegear, embarcadero)

Since different versions of the individual development environments may be used, the user
must ensure that the proper declarations are used for the respective programming languages.

3.1 Windows CE

There is an example for the CE-Version of the driver as an Visual C++ 2008 solution.
You find this example in the directory "EXAMPLES Windows CE".
For WinCE-projects please use the DLLs from the directory "DLL-WinCE". Here you find the
files for ARM and x86.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 18

3.2 Visual C++

3.2.1 What must be considered?

The files in the directory "DLL Bit32\VC" or "DLL Bit64\VC" must be used. This contains the
necessary DLL and LIB files. Furthermore, the header file that is present here must be linked
with the VC project. These files can be used for all VC development environments from version
6 (VC98). The 64-bit DLL can be used with Visual Studio 2012 or higher.

To use the ComDrvS7-DLL in the project the lib file must be included in the project
configuration. The following figure shows an example for VC 2008:

Fig.: LIB-file included in the VC project

In order to execute the application in the development environment the ComDrvS7-DLLs must
be copied into the project directory.

3.2.2 Example for VC++

The example for VC6 is located in the directory "Example Visual C V6". This can also be used
for versions < VC2008, the project is converted to the respective version when it is opened.
The example for VC2008 is located in the directory "Example Visual C 2008".

Note:

The VC-examples cannot be used with the express version of Visual C, since the MFC class
library is not available in the express version.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 19

3.3 C++ Builder

3.3.1 What must be considered?

The files located in the directory "DLL Bit32\VC" or "DLL Bit64\VC" must be used. This contains
the necessary DLL and LIB files. Furthermore, the header file that is present here must be
linked with the C++ Builder project.
The files can be used in all Builder development environments from version 5.

In the Builder project, the LIB file is simply included in the project group of the EXE file. This is
shown below.

Fig.: LIB-file included in the EXE project.

In order to execute the application in the development environment the ComDrvS7-DLLs must
be copied into the project directory.
If you use the 64-bit DLL, the extension of the lib file is ".a". The C++ Builder XE3 is the first
version, where the 64 bit DLL can be used.

3.3.2 C++ Builder example

The installation directory of ComDrvS7 contains several examples for the C++ Builder. These
are sorted in accordance with the version number of the Builder.
This includes examples for the Builder version C++Builder 5, C++Builder 2007 and C++Builder
2010. For versions < C++Builder 2007 you can use the Project C++Builder 5.

Newer versions (Builder XE, XE 2, ..) can use the example C++ Builder 2010.
There is also an 64-bit example for C++ Builder XE3 or higher.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 20

3.4 Visual Basic

3.4.1 What Must Be Considered?

The files in the directory "DLL Bit32\VB" must be used. This contains the necessary DLL and
LIB files.
This directory also contains the files "ComDrvS7V6_Declare_VB6.bas" and
"ComDrvS7_Declare_VB2008.vb". These files supply the declarations of the ComDrvS7
functions.
The file "ComDrvS7_Declare_VB6.bas" must only be used for version 6 of Visual Basic!
The file "ComDrvS7V6_Declare_VB2008.vb" is used with Visual Basic versions later than VB6.
The following figure shows how this file is included in the project folder:

Fig.: Included file with the declarations of ComDrvS7-functions

Copy the ComDrvS7-DLLsinto the Windows-System32 directory to execute the application in
the development environment.
For a 64-bit application, you have to use the .Net-wrapper class. Please look at the example
"Example Visual Basic 2012 64-Bit Wrapper".

3.4.2 Visual Basic examples

The installation directory of ComDrvS7 contains several Visual Basic examples. These are
sorted according to the version number.
The example "Example Visual Basic 6" can be used with the VB6 version.
The example "Example Visual Basic 2008” can be used with VB 2008. This example can also
be used with the Express version of VB2008.
Furthermore, the example "Example Visual Basic 2008 with wrapper" is available which uses
the .Net-wrapper-class.

If you use VB 2010 or higher, open the example "Example Visual Basic 2010" or "Example
Visual Basic 2010 with wrapper"

Important note:
If you start your application inside of Visual Studio, the DLLs of ComDrvS7 must be copied into
the BIN-Directory of the solution.
Example:
If you set the configuration manager to "Debug" and "x86", you have to copy the DLLs into the
directory "...\bin\x86\Debug\".

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 21

3.5 Visual C#

The files in the directory "DLL Bit32\VC" or "DLL-Bit64\VC" must be used. This contains the
necessary DLL files. This directory contains another directory named "NET". This is where the
DLL the wrapper-class is stored. It is named "ComDrvS7V6_Net.dll". Copy the DLLs into the
project directory "..\bin\Debug".
The wrapper-class (or the ComDrvS7V6_Net.dll file) must be inserted into the project folder
references. The following figure shows this situation:

Fig.: DLL with wrapper-class inserted into the references of the project folder

Then the following using directive must be specified:

using MHJSW.ComDrvS7V6_Net;

For more information, see the comprehensive C# example.

3.5.1 Visual C# examples

The C# example that is available form the directory "Example Visual C# 2008" can be used.
With Visual C# 2010 or newer use the example "Example Visual C# 2010". These are located
in the ComDrvS7 installation directory.
For a 64-bit application, please look at the example "Example Visual C# 2012 64Bit".

Refer to the example "Example Visual C# 2008 with PCPanel WPF" if you are using the
PCPanel WPF Controls.

Important note:
If you start your application inside of Visual Studio, the DLLs of ComDrvS7 must be copied into
the BIN-Directory of the solution.
Example:
If you set the configuration manager to "Debug" and "x86", you have to copy the DLLs into the
directory "...\bin\x86\Debug\".

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 22

3.6 Delphi

3.6.1 What must be considered?

The files located in the directory "DLL Bit32\VC" or "DLL-Bit64\BC" must be used. This contains
the necessary DLL and LIB files (respectively ".a"-file if 64 bit).
This also contains the files
"DelphiDeklarationFunktionen_V4_Bis_2006.TXT" and
"DelphiDeklarationFunktionen_Ab_Delphi2009.TXT".
These files supply the all the declarations for the ComDrvS7 functions. Depending on Delphi
version being used, the data may be copied and included in the source code. The declarations
are also available in the respective Delphi examples.

Copy the ComdrvS7 DLL files into the project directory.

3.6.2 Delphi examples

There are several examples for the different Delphi versions. The directory names indicate the
Delphi version for which the respective example is intended.

The examples included are for version 4, 2006 and 2009. If you are using a Delphi version

between version 4 and 2006, load the example for the version 4; this is then converted

accordingly.

Newer versions of Delphi IDE can use the exampel of Delphi 2009.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 23

4 Switching from an older versions of ComDrvS7

If you have created an application with an earlier version of ComDrvS7, you can benefit easily
and quickly from the innovations of Version 6.

The read and write functions of version 6 have undergone significant optimisations to improve
their speed. Furthermore, the new read and write functions can access password-protected
CPUs without having to pass the password.
This is a good reason to switch to the new read-write functions. You can easily implement this
change.

The procedure is as follows:

Execute the initial function as usual.

Call the function MPI6_ChangeProtocolTypeForV5Functions with
parameter TakeV6Protocol set to 1.

All the old read-write functions (e.g. MPI_A_ReadMerkerByte, MPI_A_WriteMerkerByte, etc.)
are converted to the new protocol type without further changes to the code.

Here the function MPI6_ChangeProtocolTypeForV5Functions must only be called once after
you have executed the initial function. The settings apply until communications are terminated.

You can find a detailed description of the MPI6_ChangeProtocolTypeForV5Functions
function in a different chapter.

Some of the old functions will no longer be mentioned in this manual. However, these are still
included to ensure compatibility with ComDrvS7. Only function name and the parameters of the
information functions have been translated into English. The descriptions in this manual are
valid for these functions.

The description of the functions up to ComDrvS7 V5 is available from the earlier manual, which
is also installed as a PDF file when you install ComDrvS7 V6.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 24

5 General ComDrvS7 procedure

The image below shows the basic procedure when using ComDrvS7.

Fig.: Procedure to use ComDrvS7

Depending on the connection that was established with a CPU, one of the 6 MPI6_Open
functions is called.
Then the MPI6_ConnectToPLC function is called.
If this function did not result in an error, the CPU may be accessed via the read, write and
information functions.
If the data is exchanged cyclically with the CPU, so you can leave the connection open and
regain access to the CPU at any time.
The function MPI6_CloseCommunication is only called at the end of the communication
session (or in case of an error) to disconnect the CPU and to release the instance of
ComDrvS7.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 25

5.1 Change to another access route to the CPU

If you have developed an application that employs the MHJ-NetLink to establish a connection
with the CPU, and if the new project uses a direct TCP/IP connection to the CPU, changes to
your code are minimised.

In ComDrvS7, the access path to the CPU is defined via the open function. When the open
function has been executed, there are no differences regarding the access path.

For example, if you must change from MHJ-NetLink to TCP/IP Direct, then the call must access
"MPI6_OpenTcpIp" instead of "MPI6_OpenNetLink“. Otherwise, no changes are necessary.
This also applies to all the other access paths.

5.2 Response to an error occurring in the open functions

Errors that occur when the open-functions are being processed are usually caused by a
hardware error or the parameters passed to the particular Open function are not correct.
An Open function that returns an error does not require a call to that another function since the
communication instance is removed in the Open function when the error occurs.

5.3 Reaction to an error that occurs in the open functions

When an error occurs in the MPI6_ConnectToPLC function or one of the read-/write functions
with respect to the CPU (e.g. MPI6_ReadByte, MPI6_WriteDword, etc.), the communication
instance should generally be closed by means of the function MPI6_CloseCommunication and
subsequently reopened with a call to the respective open function.

It is important to issue a call to the MPI6_CloseCommunication function, otherwise the
communication instance remains in memory!

Note regarding errors that are not caused by communication problems

Errors that result from faulty parameter being transferred, etc. are an exception. An example is
the error that occurs when an action with a WLD file does not find the file in the specified path.
In this case, of course it is usually sufficient to correct the path without a call to the
MPI6_CloseCommunication function.
These errors usually occur in the development phase of the application.

See chapter "Error messages" for a list of error codes.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 26

6 Description of the different functions

This chapter discusses the individual functions of ComDrvS7 with their tasks. Most of the
descriptions are followed by a brief example that employs the respective function.

6.1 Basic information explaining the different functions of
ComDrvS7

The individual functions are shown in C syntax. Because the examples are very simple, they
should not pose any problems to VB, Delphi and C #programmers. The explanations of the
parameters are the same for all programming languages. Any variation is detailed in the
explanation of each parameter.

When using the wrapper class in .Net, the handle for the communication instance is not
required, since this handle is managed by the wrapper class.

6.2 The function: MPI_A_GetDLLError or MPI_A_GetDLLErrorEng

Brief description

You can call the MPI_A_GetDLLError function to obtain a string (null terminated), which
describes the error being returned in detail. Each function in the DLL returns the value '0'
(FALSE) as a function value if an error has occurred during the execution. In this case, the
variable ErrorCode that must be passed to each function contains the error code.
If you want to describe the error, you can call the function MPI_A_GetDLLError.
Chapter "Error messages" contains a description of the error codes.
The function MPI_A_GetDLLErrorEng returns the error messages in English.
In the .Net wrapper class, the functions have the name "MPI6_GetDLLError" or
"MPI6_GetDLLErrorEng"

Description of the Parameters

Argument C-Type Description

Handle INT Das Handle der Kommunikationsinstanz welche angesprochen
wird. (Entfällt bei .Net-Wrapper-Klasse)

ErrorString CHAR* Enthält den String für den übergebenen Errorcode.

ErrorCode WORD Error-Code für den der String geliefert werden soll.

Function return BOOL Wurde die Funktion erfolgreich ausgeführt, so wird der Wert '1'
(TRUE) geliefert. Bei einem Fehler ist der Rückgabewert '0'
(FALSE).

Beispiel

In den Beispielen zu den einzelnen Funktionen, wird MPI_A_GetDLLError häufig verwendet.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 27

6.3 The function: MPI6_OpenRS232

Brief description

The MPI6_OpenRS232 function must be called to communicate with a CPU for the first time,
provided that the communication link is established via a serial interface or a virtual COM
port on a USB adapter.
The function opens the specified PC interface using the specified communication parameters.
In addition, MPI network data must be transferred to the function.
Execution of the function can only succeed if a CPU is connected to the specified PC interface.

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path is used (COM port, baud rate, etc.). This
means that the handle defines the communication instance (not applicable for .Net wrapper
class).

Description of the Parameters:

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

ComNr INT Definition of the PCs serial port to which the PLC is connected.
E.g. '1' for COM1

BaudRate LONG Defines the baud rate to communicate with the PLC. This value
depends on the PC/MPI cable being used. The older models only
support a baud rate of 19200 baud. With the latest cables the
baud rate may be set to 19200, 38400, 57600 and 115200 baud.
You may also enter: 19200, 38400, 57600, 115200
If this value is specified incorrectly, it is impossible to
establish communications.

PGAddress BYTE Specifies the MPI/DP address that is used by the communication
instance to log into the MPI/DP network. It is important to note
that the entered address may be used by any other device in
the connected network. By default, the programming devices
are set to address '0 '.

HighestAddress BYTE Defines the highest address that may be used in connected
MPI-network. Enter a value of 15, 31, 63 or 126. It is important to
ensure that all devices in the connected network have the same
highest address.

ComWasAlread
yUsed

BOOL* This parameter returns TRUE if the port is already in use by
another communication instance. In this case, the communication
parameters (e.g. baud rate and PGAddress) that were passed
with the function were not used. Communication can take place
however.

Error WORD* If the parameter returns FALSE, then the interface was still
unallocated and the specified communication parameters were
set.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 28

Function return BOOL If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALS
E).

Example

The following example opens the COM2 interface using the function MPI6_OpenRS232. A
transmission rate of 115200 baud was selected.

//Variables
int ComNr=2; //COM2 port
long BaudRate=115200; //baud rate 115200BYTE PGMPIAdresse=0;
//address of the DLL application = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
bool SchnittstelleWarSchonAllokiert=false; //true if the
 //interface was
 //already in use
WORD Error=0; //error variable
char ErrorString[255];//error string to return the error
int MPIHandle=-1; //handle of the new communication instance

//establish connection
if (! MPI6_OpenRS232(&MPIHandle, ComNr, BaudRate, PGMPIAdresse,
 HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Einleitung war erfolgreich.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 29

6.4 The function: MPI6_OpenNetLink

Brief description

The MPI6_OpenRS232 function must be called to communicate with a CPU for the first time,
provided that the communication link is established via TCP/IP using a MHJ-NetLink or a

MHJ-NetLink++.
The function establishes a connection with a NetLink that has the specified IP address. In
addition, MPI network data must be transferred to the function.

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
To ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the NetLink that will be used to execute
the communications. The address is entered in the form
"172.16.130.84".

PGAddress BYTE Specifiy the MPI/DP address that the communication instance
must use to log on to the network. It is important to note that
the entered address must not be used by any other device on
the connected network. By default, programming devices are
set to the address '0'.
Attention: this function call cannot change the PG address of the
MHJ-NetLink. This must be defined using the supplied
configuration utility.

HighestAddress BYTE Defines the highest MPI/DP address, which may be used on the
connected network. Here the values 15, 31, 63 or 126 must be
specified. It is important to ensure that all devices on the
connected network have the same highest address.
Attention: this function call cannot change the PG address of the
MHJ-NetLink. This must be defined using the supplied
configuration utility.

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 30

Example

The following example employs the MPI6_OpenNetLink function to connect to a NetLink with
the IP address 172.16.130.84.

BYTE PGMPIAdresse=0; //MPI address of the communication instance = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
char IPAdresseStr[50]={0};
//enter the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_OpenNetLink(&MPIHandle, IPAdresseStr, PGMPIAdresse,
 HoechsteMPI, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Einleitung erfolgreich.", "",
 MB_ICONINFORMATION);

Note:
It should be mentioned again that the specifying the PG-address and the highest MPI/DP
address does not change the values defined in the NetLink. The NetLink settings are defined by
means of the configuration utility that is included. These settings must only be entered once,
thereafter the settings are stored permanently the MHJ-NetLink.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 31

6.5 The function: MPI6_OpenTcpIp

Brief description

The MPI6_OpenTcpIp function must be called to communicate with a CPU for the first time,
provided that the communication link is established via TCP/IP with an Ethernet-CP or a
CPU with an integrated Ethernet interface.
The function establishes a connection with an Ethernet-CP that has the specified IP address.
The slot number of the CPU is also required. For S7-300 systems, this must usually be defined
as Slot 2.

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the Ethernet-CP or the integrated
Ethernet interface of the CPU that will be used to execute the
communications. The address is entered in the form
"172.16.130.84".

PlcSlotNr INT Specifies the slot of the CPU with which you want to
communicate. For S7-300 systems, this must usually be defined
as slot 2.

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 32

Example

The following example employs the MPI6_OpenTcpIp function to establish a connection with an
Ethernet-CP with the IP address 172.16.130.84.

WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
int CPUSlotNr=2; //slot of the CPU to be addressed in the PLC rack
char IPAdresseStr[50]={0};
//enter the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_OpenTcpIp(&MPIHandle, IPAdresseStr,
 CPUSlotNr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 33

6.6 The function: MPI6_OpenTcpIp_S71500

Brief description

It is imperative to call the function MPI6_OpenTcpIp_S71500 to communicate for the first time
with a CPU of the S7-1500® family.

The function establishes a connection with a S7-1500® that has the specified IP address.

Please read the chapter "Required settings in a PLC 1500 from Siemens" for the important
hardware settings!

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the Ethernet-CP or the integrated
Ethernet interface of the CPU that will be used to execute the
communications. The address is entered in the form
"172.16.130.84".

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The following example employs the MPI6_OpenTcpIp_S71500 function to establish a

connection with a S7-1500? CPU with the IP address 172.16.130.84

WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //Handle of the new communication instance
char IPAdresseStr[50]={0};
//specify the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_OpenTcpIp_S71500(&MPIHandle, IPAdresseStr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 34

6.7 The function: MPI6_OpenTcpIp_S71500Ext

Brief description

It is imperative to call the function MPI6_OpenTcpIp_S71500 to communicate for the first time
with a CPU of the S7-1500® family.

The function establishes a connection with a S7-1500® that has the specified IP address.
In addition to the function "MPI6_OpenTcpIp_S71500", the function supports the selecting of
the used network adapter. This function is required, when there are more than one network
adapter available.

Please read the chapter "Required settings in a PLC 1500 from Siemens" for the important
hardware settings!

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the Ethernet-CP or the integrated
Ethernet interface of the CPU that will be used to execute the
communications. The address is entered in the form
"172.16.130.84".

IPAddressNetw
orkAdapter

CHAR* IP address of the PC-network adapter. This adapter is connected
with the PLC.

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 35

6.8 The function: MPI6_OpenTcpIp_S71200 (Also in MICRO version)

Brief description

It is imperative to call the function MPI6_OpenTcpIp_S71200 to communicate for the first time
with a CPU of the S7-1200® family.
The function establishes a connection with a S7-1200® that has the specified IP address.

The function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

If you use a plc with firmwareversion 4 (or higher), please read the infos in chapter "Required
settings in a PLC 1500® (and S7-1200® from firmware version 4) from Siemens"

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the Ethernet-CP or the integrated
Ethernet interface of the CPU that will be used to execute the
communications. The address is entered in the form
"172.16.130.84".

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The following example employs the MPI6_OpenTcpIp_S71200 function to establish a

connection with a S7-1200? CPU with the IP address 172.16.130.84

WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //Handle of the new communication instance
char IPAdresseStr[50]={0};
//specify the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_OpenTcpIp_S71200(&MPIHandle, IPAdresseStr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 36

6.9 The function: MPI6_OpenTcpIp_Logo (Only MICRO-version)

Brief description

It is imperative to call the function MPI6_OpenTcpIp_Logo to communicate for the first time with
a CPU of the LOGO!® (0BA7 or higher) family.

The function establishes a connection with a LOGO!® that has the specified IP address (Infos
about these settings are described in the chapter "Configuration of the LOGO's IP address").

If you use a LOGO!® 0BA8 (and higher), please read the chapter "Special behaviors of a
LOGO!® 0BA8 (and higher)".

This function creates a communication instance. The variable "Handle" supplies the
"identification" for this instance. This identifier must be passed to the other functions of the DLL
to ensure that the specified communication path (IP address) is used (not required for the .Net
wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddress CHAR* Provide the IP address of the Ethernet-CP or the integrated
Ethernet interface of the CPU that will be used to execute the
communications. The address is entered in the form
"172.16.130.84".

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The following example employs the MPI6_OpenTcpIp_Logo function to establish a connection

with a LOGO!® - CPU with the IP address 172.16.130.84

WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //Handle of the new communication instance
char IPAdresseStr[50]={0};
//specify the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_OpenTcpIp_Logo(&MPIHandle, IPAdresseStr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 37

6.10 The function: MPI6_Open_NetLinkPro_TCP_AutoBaud

Brief description

The MPI6_Open_NetLinkPro_TCP_AutoBaud function must be called to communicate with a
CPU for the first time, provided that the communication link is established via a NETLink
PRO with a MPI or Profibus-DP interface of a CPU.
 The function establishes a connection with a NETLink PRO that has the specified IP address.
In addition, the PG-address and the highest address that exists in the network (MPI or Profibus)
must be specified. In contrast to the function MPI6_Open_NetLinkPro_TCP_SelectBaud , this
function is used when the NETLink PRO must automatically detect the baud rate that is in use
on the bus. Here it is important to note that it may take a few seconds more to establish
communications,since baud rate detection requires some time. If the communication link is
established and disconnected at short intervals (e.g. to communicate with many different CPUs)
you should use the MPI6_Open_NetLinkPro_TCP_SelectBaud function.

The MPI6_Open_NetLinkPro_TCP_AutoBaud function creates a communication instance.
The variable "Handle" supplies the "identification" for this instance. This identifier must be
passed to the other functions of the DLL to ensure that the specified communication path (IP
address) is used (not required for the .Net wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddressStr CHAR* Provide the IP address of the NETLink PRO that will be used to
execute the communications. The address is entered in the form
"172.16.130.84".

PGAddress BYTE The MPI/DP address that the communication instance must use
to log on to the MPI/DP network. It is important to note that the
entered MPI/DP address must not be used by any other
device on the connected MPI/DP network. By default, the
programming devices are set to MPI/DP address '0'.

HighestAddress BYTE Defines the highest MPI/DP address, which may be used in the
connected network. Here the values 15, 31, 63 or 126 must be
specified. It is important to ensure that all devices on the
connected MPI/DP network are set to the same highest MPI/DP
address.

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 38

Example

The following example employs the MPI6_Open_NetLinkPro_TCP_AutoBaud function to
connect to a NETLink PRO with the IP address 172.16.130.84.

BYTE PGMPIAdresse=0; //MPI address of the communication instance = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
char IPAdresseStr[50]={0};
//enter the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_Open_NetLinkPro_TCP_AutoBaud(&MPIHandle, IPAdresseStr,
 PGMPIAdresse, HoechsteMPI,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Note:

Before the NETLink PRO is used for the first time, it must be set to the necessary
communication parameters. Use the configuration software that is supplied with ComDrvS7.
After the ComDrvS7 has been installed, it is located in the directory "NETLink PRO
Konfigurator".
The settings you have entered (such as IP address, subnet mask, etc.) are permanently stored
in the NETLink PRO. This means that the settings are still available after the supply voltage has
been disconnected from of the NETLink PRO.

No additional driver is required to operate the NETLink PRO with ComDrvS7!

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 39

6.11 The function: MPI6_Open_NetLinkPro_TCP_SelectBaud

Brief description

The MPI6_Open_NetLinkPro_TCP_SelectBaud function must be called to communicate with
a CPU for the first time, provided that the communication link is established via a NETLink
PRO with a MPI or a Profibus-DP interface of a CPU.
The function establishes a connection with a NETLink PRO that has the specified IP address.
In addition, the PG-address and the highest address that exists in the network (MPI or Profibus)
must be specified. In contrast to the function MPI6_Open_NetLinkPro_TCP_AutoBaud , this
function is used when the baud rate of the MPI/DP bus is known. In such a case, the time to
detect the baud rate is not required, which speeds up the initialisation. You should use this
function if the communication link is established and disconnected at short intervals (e.g. to
communicate with many different CPUs). Provided however, that the baud rate of the MPI/DP
bus is known. However, this should apply under most circumstances.

The MPI6_Open_NetLinkPro_TCP_SelectBaud function creates a communication instance.
The variable "Handle" supplies the "identification" for this instance. This identifier must be
passed to the other functions of the DLL to ensure that the specified communication path (IP
address) is used (not required for the .Net wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

IPAddressStr CHAR* Provide the IP address of the NETLink PRO that will be used to
execute the communications. The address is entered in the form
"172.16.130.84".

PGAddress BYTE The MPI/DP address that the communication instance must use
to log on to the MPI/DP network. It is important to note that
the entered MPI/DP address must not be used by any other
device on the connected MPI/DP network. By default, the
programming devices are set to MPI/DP address '0'.

HighestAddress BYTE Defines the highest MPI/DP address, which may be used in the
connected MPI/DP network. Here the values 15, 31, 63 or 126
must be specified. It is important to ensure that all devices on the
connected network are set to the same highest MPI/DP address.

IsProfibusDP BOOL When communicating with the CPU via Profibus-DP, set this
value to '1 '(TRUE). When communicating via MPI, set this value
to '0' (FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 40

BaudrateUsed WORD Passing the baud rate defined for the MPI/DP network. Here the
following valued have been defined:
9.6 kBaud: MPIA_BAUD_96 corresponds to a value 0
19.2 kBaud: MPIA_BAUD_19_2 corresponds to a value 1
45.45 kBaud: MPIA_BAUD_45_45 corresponds to a value 2
93.74 kBaud: MPIA_BAUD_93_75 corresponds to a value 3
187.5 kBaud: MPIA_BAUD_187_5 corresponds to a value 4
500 kBaud: MPIA_BAUD_500 corresponds to a value 5
1500kBaud: MPIA_BAUD_1500 corresponds to a value 6
3000 kBaud: MPIA_BAUD_3000 corresponds to a value 7
6000 kBaud: MPIA_BAUD_6000 corresponds to a value 8
12000 kBaud: MPIA_BAUD_12000 corresponds to a value 9

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 41

Example

The following example employs the MPI6_Open_NetLinkPro_TCP_SelectBaud function to

connect to a NETLink PRO with the IP address 172.16.130.84. The NETLink PRO is connected

to the Profibus-DP interface of the CPU. The DP network is set to operate at 1.5MBaud.

BYTE PGMPIAdresse=0; //DP address of the communication instance = 0
BYTE HoechsteMPI=31; //highest DP address permitted in network = 31
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
char IPAdresseStr[50]={0};
bool IstProfibusDP=true; //this is a DP network
WORD VorgabeBaudrate=MPIA_BAUD_1500;//the baud rate is set mto 1.5MBaud
eingestellt
//enter the IP address
strcpy(IPAdresseStr, "172.16.130.84");
//establish connection
if (! MPI6_Open_NetLinkPro_TCP_SelectBaud(&MPIHandle, IPAdresseStr,
 PGMPIAdresse, HoechsteMPI,
 IstProfibusDP, VorgabeBaudrate
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Note:

Before the NETLink PRO is used for the first time, it must be set to the necessary
communication parameters. Use the configuration software that is supplied with ComDrvS7.
After the ComDrvS7 has been installed, it is located in the directory "NETLink PRO
Konfigurator".
The settings you have entered (such as IP address, subnet mask, etc.) are permanently stored
in the NETLink PRO. These settings are also retained when the supply power to the NETLink
PRO is turned off.

No additional driver is required to operate the NETLink PRO with ComDrvS7!

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 42

6.12 The function: MPI6_Open_SimaticNet (only 32-bit, not CE)

Brief description

The MPI6_Open_SimaticNet function must be called to communicate with a CPU for the first
time, provided that the communication link is established via the SIMATIC® NET driver.
This communication can be used to access the Siemens USB-MPI adapter, as well as CPs
5511, 5612 etc.. Communications via a TS Adapter II are also supported.

The condition is that the SIMATIC? NET driver was installed on the PC. This driver is installed
on the PC, for example, when the Simatic?-Manager (from V5.1), the driver for the
SIEMENS-USB adapter or the Teleservice V6 are installed. You must select the interface to be
used here in the "PG/PC interface configuration" dialog. You can access this dialog by means
of the file "s7epatsx.exe" in the Windows System32 directory.
With the Siemens Teleservice V6, you can start a remote query via the telephone line using the
TS-adapter II.

The function MPI6_Open_SimaticNet establishes a connection with the device that was
selected in the dialog "PG/PC interface configuration".

The function MPI6_Open_SimaticNet function creates a communication instance. The variable
"Handle" supplies the "identification" for this instance. This identifier must be passed to the
other functions of the DLL to ensure that the specified communication path is used (not
required for the .Net wrapper class).

Description of the parameters

Argument C-Type Description

Handle INT* This is where the handle of the newly generated communication
instance is returned (not applicable for the .Net wrapper class).

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 43

Example for MPI6_Open_SimaticNet:

The example below employs the function MPI6_Open_SimaticNet to establish a connection
with the interface that was selected in the "PG/PC interface configuration" dialog.

WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance

if (! MPI6_Open_SimaticNet(&DLLHandle, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Note:

The SIMATIC®-NET connection must not be used to establish connections MHJ-NetLink,
NetLink PRO or TCP/IP-Direkt. Please use the appropriate initialisation functions (e.g.
MPI6_Open_NetLinkPro_TCP_SelectBaud, MPI6_OpenTcpIp, etc.) for these communication
paths.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 44

6.13 The function: MPI6_CloseCommunication

Conditions to execute the function

The initialisation functions MPI6_OpenXXXX must have been completed successfully.

Brief description

The MPI6_CloseCommunication function must be called last in order to stop the
communications with a PLC for good. This function also closes the interface that was opened
by means of the function "MPI6_OpenRS232" or via the MPI6_OpenNetLink, MPI6_OpenTcpIp,
MPI6_Open_SimaticNet, MPI6_Open_NetLinkPro_TCP_AutoBaud or
MPI6_Open_NetLinkPro_TCP_SelectBaud functions. Furthermore, the communication instance
identified by the specified handle will be eliminated.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Error WORD* If the function returns '0’, an error has occurred during execution.
In this case, the Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example for MPI6_CloseCommunication:

In the example below, a previously established communication link with a CPU is terminated,
the interface or socket is closed and the communication instance is eliminated.

WORD Error=0;
char ErrorString[255]={0};//error string to return the error

if (! MPI6_CloseCommunication(MPIHandle, &Error)){
MPI_A_GetDLLError(ErrorString, Error);
MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);

}//end if
else {
 MessageBox(AppHandle, "communications terminated without
errors.", "", MB_ICONEXCLAMATION);
}//end else

Note:
Even if the function returns an error, the serial interface or the socket is closed and the
communication instance eliminated. One exception is the error
ERROR_MPIA_PARAMETER_ERROR (number 510) that does not pass a correct handle. In
this case, no action can be executed (does not apply to the .Net wrapper class).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 45

6.14 The function: MPI6_GetAccessibleNodes

Conditions to execute the function

The initialisation functions MPI6_OpenXXXX must have been completed successfully.
Important:
The function cannot be executed if the initialisation was executed by means of the
"MPI6_OpenTcpIp", "MPI6_OpenTcpIp_S71200" or other TCP/IP-functions.

Brief description

The MPI6_GetAccessibleNodes function can be used to identify the MPI/DP addresses of the
devices connected to an MPI network or to Profibus-DP.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Addresses INT* Integer array that lists the MPI/DP addresses of each node in
the connected MPI/DP network. The array must accommodate
127 integer fields.

countAddresses INT* Returns the number of nodes connected to the MPI/DP
network.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 46

Example MPI6_GetAccessibleNodes:

The example below determines the nodes that are accessible on the connected MPI-network.

int ComNr=2; //COM2 port
long BaudRate=115200; //baud rate 115200
BYTE PGMPIAdresse=0; //MPI address of the DLL application = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
bool SchnittstelleWarSchonAllokiert=false;
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
int Teilnehmer[130]={0}; //array for the nodes
int AnzahlTeilnehmer=0;
char AusgabeText[255]={0};
//establish connection
if (! MPI6_OpenRS232(&MPIHandle, ComNr, BaudRate,
 PGMPIAdresse,
 HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Einleitung war erfolgreich.", "",
 MB_ICONINFORMATION);
//determine the accessible nodes
if (! MPI6_GetAccessibleNodes(MPIHandle, Teilnehmer,
 &AnzahlTeilnehmer,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
else {
 //display the number of nodes
 wsprintf(AusgabeText, "Es sind %i Teilnehmer am MPI-Netz
 angeschlossen", AnzahlTeilnehmer);
 MessageBox(AppHandle, AusgabeText, "", MB_ICONEXCLAMATION);
}//end else
//terminate communications
if (! MPI6_CloseCommunication(MPIHandle, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communications terminated without errors.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 47

6.15 The function: MPI6_SetRoutingData

Conditions to execute the function

The initialisation functions (with the exception of MPI6_OpenRS232) (e.g. MPI6_OpenNetLink,
MPI6_OpenTcpIp, etc.) must have been completed successfully.

Brief description

The MPI6_SetRoutingData function must be called before you can access a CPU that is not
directly connected using the MPI6_ConnectToPLCRouting function. The parameters of the
function define the CPU to which you want to be routed. Routing means that you do not
communicate with the CPU that is directly connected to the PC but via a different CPU that is
linked with this CPU.

Important exception:

Routing can employ communication channels MHJ-NetLink, NetLink PRO, TCP/IP direct and
SIMATIC?-NET. Routing is not possible with the MPI6_OpenRS232 function.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Routing example:

The MPI6_ConnectToPLCRouting function is explained by an example regarding routing.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 48

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

TargetSlotNr BYTE Here you must specify the slot number (i.e. the slot) of your
CPU. For S7-300 systems, this must be defined as Slot 2.
With S7-400 systems, you can find the slot number in the
hardware configuration.

TargetRackNr BYTE Specifies the rack number where the CPU was installed.
Normally, the CPU is installed in the rack 0, i.e. this should
be set to 0.

TargetMPI_DP_Addre
ss

BYTE If the target CPU is accessible via a MPI or a DP network,
then this parameter must be set to the MPI/DP address of
the target CPU in this network.

TargetIPAddressStr char* If the target CPU is accessible via a TCP/IP network, then
this parameter must be set to the IP address of the CPU or
the Ethernet CP (that is located on the rack of the CPU).

TargetSubnetID_High WORD High-word of the subnet ID of the S7 network that will be
used to access the CPU. The subnet ID is defined in the
hardware configuration.

TargetSubnetID_Low WORD Low-word of the subnet ID of the S7 network that will be
used to access the CPU. The subnet ID is defined in the
hardware configuration.

TargetNetIsMPI_DP_
Net

BYTE If the CPU is accessed via a MPI/DP network, then this
value must pass a value of 1. In this case, the parameter
ZielBaugruppeIPAdresseStr is ignored. The parameter
ZielBaugruppeMPI_DP_Adresse must specify in the correct
address. If a value of 0 is supplied, then the CPU is
specified by means if the IP address, the MPI/DP address is
ignored and should be set to 2.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an
error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE)
is returned. When an error has occurred, the returned value
is '0' (FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 49

6.16 The function: MPI6_ConnectToPLC

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.

Brief description

The MPI6_ConnectToPLC function must be called before you can address the desired CPU
with read or write access functions. This function determines which node is addressed via the
connected MPI or Profibus-DP network. Here the communication partner is specified by the
MPI or the Profibus address.

Important exception:

If the initialisation was executed by means of the MPI6_ConnectToPLC function, then the MPI
address is a dummy value, since the CPU is already defined by the IP address and the CPU
slot number. In this case, the MPI/DP address must always be specified as 2.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

PlcAddress BYTE Contains the MPI/DP address of the required communication
partner. The value of the address can range from 0 to 126. For
communication path TCP-IP direct, enter a value of 2.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Note:

If the function returns one of the following error-codes (decimal):
1046: PLC is not a S7-1500®

1045: PLC is not a LOGO
1044: PLC is not a S7-1200®

then the function "MPI6_CloseCommunicatio" was already executed inside of the function.
These errors occur, if the wrong open-function was called. For example the open-function of the
S7-1200 and a S7-1500 is actually plugged.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 50

Example

The example below establishes a communication link with a PLC. The CPU has the MPI
address 10.

int ComNr=2; //COM2 port
long BaudRate=115200; //baud rate 115200
BYTE PGMPIAdresse=0; //MPI address of the DLL application = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
bool SchnittstelleWarSchonAllokiert=false; //true if the
 //port was already
 //in use
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
BYTE AGMPIAdresse=10; //the MPI address of the CPU to be accessed
//establish connection
if (! MPI6_OpenRS232(&MPIHandle, ComNr, BaudRate, PGMPIAdresse,
 HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);
//establish communications
if (! MPI6_ConnectToPLC(MPIHandle, AGMPIAdresse, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
else {
 MessageBox(AppHandle, "communications established successfully!",
"", MB_ICONINFORMATION);
}//end else
//terminate communications
if (! MPI6_CloseCommunication(MPIHandle, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communications terminated without errors.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 51

6.17 The function: MPI6_ConnectToPLCRouting

Conditions to execute the function

The initialisation functions (with the exception of MPI6_OpenRS232) (e.g. MPI6_OpenNetLink,
MPI6_OpenTcpIp, etc.) must have been completed successfully. In addition, the routing data
must have been transferred with the MPI6_SetRoutingData function.

Brief description

The MPI6_ConnectToPLCRouting function must be called before you can address the desired
CPU with read or write access functions. In contrast to the MPI6_ConnectToPLC function, the
CPU that is connected directly to the PC will not be accessed. Here a CPU will be accessed
that is connected via a network link with the directly connected CPU. The CPU that will be
accessed can be specified by means of the parameters of the MPI6_SetRoutingData function.

Important exception:

If the initialisation was executed by means of the MPI6_OpenRS232 function, then it is not
possible to perform routing. In this case, the MPI6_ConnectToPLCRouting function must not be
used.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

PlcAddress BYTE Contains the MPI/DP address of the directly connected
communication partner. The value of the address can range
from 0 to 126. For communication path TCP-IP direct, enter a
value of 2.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 52

6.18 Routing example

The example below shows both functions, MPI6_SetRoutingData and
MPI6_ConnectToPLCRouting. In the example, the PC is connected to the MPI interface of a
CPU via a NetLink PRO. A network links this CPU to two other CPUs. This is shown in the
following figure:

The example below shows both functions, MPI6_SetRoutingData and
MPI6_ConnectToPLCRouting. In the example, the PC is connected to the MPI interface of a
CPU via a NetLink PRO. A network links this CPU to two other CPUs. This is shown in the
following figure:

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 53

6.18.1 Initialisation by means of a NetLink PRO

In the first step, the initialisation function for the NetLink PRO communication path must be
called.

BYTE PGMPIAdresse=0; //MPI address of the communication instance = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
char IPAdresseStr[50]={0};
//enter the IP-address of the NetLink PRO
strcpy(IPAdresseStr, "192.168.2.100");
//establish connection
if (! MPI6_Open_NetLinkPro_TCP_AutoBaud(&MPIHandle, IPAdresseStr,
 PGMPIAdresse, HoechsteMPI,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);

Here there is no different to a call that does not use routing. The IP address of the NetLink PRO
is specified in the call. In this example, the IP address is "192.168.2.100".

6.18.2 Routing data transfer

Now the data must be passed to the actual CPU being accessed using the
MPI_A_SetRoutingData function.

BYTE ZielBaugruppeSlotNr=2;
BYTE ZielBaugruppeRackNr=0;
BYTE ZielBaugruppeMPI_DP_Adresse=2;//address not relevant
char ZielBaugruppeIPAdresseStr[50]={0};
strcpy(ZielBaugruppeIPAdresseStr, "192.168.2.177");//IP of the 315-PN/DP
WORD ZielSubnetzID_High=0x1122;
WORD ZielSubnetzID_Low=0x3344;
BYTE ZielNetzIstMPI_DP_Netz=0;//the target network is Ethernet
//
if (! MPI6_SetRoutingData(DLLHandle, ZielBaugruppeSlotNr,
 ZielBaugruppeRackNr, ZielBaugruppeMPI_DP_Adresse,
 ZielBaugruppeIPAdresseStr, ZielSubnetzID_High,
 ZielSubnetzID_Low, ZielNetzIstMPI_DP_Netz,
 &Error)){
 //error
 MPI_A_GetDLLError(DLLHandle, DLLErrorString, Error);
 MessageBox(AppHandle, DLLErrorString, "", MB_ICONSTOP);
 //
 return;
}//end if
MessageBox(AppHandle, "Routing data transferred successfully.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 54

Explanation of the parameters:

The "TargetSlotNr" is set to 2, because the CPU to be accessed is installed in slot 2 (as with all
300-type systems). Since the 315-PN/DP is installed in the first rack, the "TargetRackNr" is set
to 0.
The "TargetMPI_DP_Address" parameter is not relevant for this example, since the 315-PN/DP
is accessed via Ethernet. The IP address is specified by parameter "TargetIPAddressStr", this
is the IP address of the 315-PN/DP.
The parameters "TargetSubnetID_High" and "TargetSubnetID_Low" must contain the S7
subnet ID of the network that connects the CPU being accessed with the master. In the
example the 315-PN/DP is accessed using the Ethernet link that is also connected to the
315-2DP via the Ethernet CP. This has the Ethernet subnet ID "1122-3344", i.e. these values
must be specified by the parameters.
Finally, the parameter "TargetNetIsMPI_DP_Net" must be allocated. In this example, this value
must be set to 0, because the target network that is used to access the 315-PN/DP is an
Ethernet network. This means that the IP address will be used and not the MPI/DP address.

Now the parameters are complete. This only leaves the last function
MPI6_ConnectToPLCRouting to be called.

6.18.3 Call the function MPI6_ConnectToPLCRouting

The MPI6_ConnectToPLC function must not be used, since the connection will not be
established with the CPU that is connected directly to the PC but with a CPU that is networked
with this CPU. You must use the function MPI6_ConnectToPLCRouting to establish
communications.
The example below shows this call:

BYTE AGMPIAdresse=8; //the MPI address of the directly connected CPU
if (!MPI6_ConnectToPLCRouting(MPIHandle, AGMPIAdresse,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
else {
 MessageBox(AppHandle, "Communications established successfully!",
"", MB_ICONINFORMATION);
}//end else

The CPU MPIAdresse must have the value 8, since this is the MPI address of CPU C313-DP to
which the PC is connected. This CPU then forwards the request to the CPU that must be
accessed.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 55

6.18.4 Conclusion as to the routing example

This completes the calls, the 315-PN/DP can now be accessed by means of the read and write
functions. In comparison with direct access, there are no differences when calling the functions.
The example has demonstrated that the function MPI6_SetRoutingData followed by
MPI6_ConnectToPLCRouting must be called after the respective initialisation functions.

When configuring the hardware of the CPUs it is important to note, that the routing data must
also be transferred. In the Simatic?-Manager for example, this type of configuration must be
performed by means of the NetPro. This is necessary to ensure that the CPUs are aware of the
other CPUs will be accessible via them.

It should also be noted that the rate of communication when routing is less that that of a direct
connection.

ComDrvS7 supports routing for the communication paths MHJ-NetLink, NetLink PRO, TCP/IP
direct and SIMATIC®-NET.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 56

6.19 The function: MPI6_ReadByte

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The function MPI6_ReadByte can be used to determine the status of input, output, flags and
data block bytes.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the bytes must be read.

byteBufferPtr BYTE* This buffer is used to store the status information.

wCountBytes WORD It must be ensured that the area is sufficiently large to
accommodate all the status information. The buffer must have
as many fields as are required for the requested bytes.

wDBNR WORD Number of bytes to read. Up to a max. of 65535 bytes may be
read with one call. If the bytes being read are the contents of a
data block, the number of the DB (1-65535) must be specified
here. Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 57

Example

The example below retrieves the status information from the communication partner having MPI
address 10 starting with memory byte 10. 30 bytes must be read.

int ComNr=2; //COM2 port
long BaudRate=115200; //baud rate 115200
BYTE PGMPIAdresse=0; //MPI address of the DLL application = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
bool SchnittstelleWarSchonAllokiert=false;
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
int MPIHandle=-1; //handle of the new communication instance
BYTE AGMPIAdresse=10; //the MPI address of the CPU to be accessed
bool Fehler=false;
char AusgabeStr[255]={0};//string for text output
//establish connection
if (! MPI6_OpenRS232(&MPIHandle, ComNr, BaudRate, PGMPIAdresse,
 HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation successful.", "",
 MB_ICONINFORMATION);
//establish communications
if (! MPI6_ConnectToPLC(MPIHandle, AGMPIAdresse, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 Fehler=true;
}//end if
else {
 MessageBox(AppHandle, "Communications established successfully!",
 "", MB_ICONINFORMATION);
}//end else
//read data
if (!Fehler){
 BYTE StatusBuffer[100]={0};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_ReadByte(MPIHandle, Operand, 10, StatusBuffer,
 30, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 wsprintf(AusgabeStr, "Clock memory 11 has the status: %02X",
 StatusBuffer[1]);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 58

//terminate communications
if (! MPI6_CloseCommunication(MPIHandle, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communications terminated without errors.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 59

6.20 The function: MPI6_ReadWord

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The function MPI6_ReadWord can be used to determine the status of input, output, flags and
data block words.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!

This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the words must be read.

wordBufferPtr WORD* The status information is stored in this buffer.
You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields as words that will be queried.

wCountWord WORD Number of words to read. Up to a max. of 65535 words may be
read with one call.

wDBNR WORD If the words being read are the contents of a data block, the
number of the DB (1-65535) must be specified here.
Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 60

Note:
It should be noted that the structure of the returned status values is as follows (example of word
memory MW2):
Word memory 2 = clock memory 2 (HIBYTE) and clock memory 3 (LOBYTE)
It should also be noted that byte-oriented word operands overlap. For this reason, the function
either reads all even or all odd words in the specified area. This depends on the value specified
in "wAddress". If you specify an even number here (e.g. 10), all even-numbered words are
read. If, for example, the value passed is 13, then all the odd words read.
In actual fact it only makes sense to read even-numbered words, the option was left open to
cater for exceptions.

Example

In the example below, the status information of the even numbered word memories from word
memory 0 are read from a communication partner. There are 5 words to be read. After the
action, the status buffer contains the contents of word memories MW0, MW2, MW4, MW6 and
MW8.

The example assumes that the initialisation functions (e.g. MPI6_OpenTcpIp) were completed
successfully. Similarly, the function MPI6_ConnectToPLC must have been executed without
errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 WORD StatusBuffer[100]={0};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_ReadWord(MPIHandle, Operand, 0, StatusBuffer,
 5, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Word memory 2 has status (hex):
 %04X", StatusBuffer[1]);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 61

6.21 The function: MPI6_ReadDword

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The function MPI6_ReadDword can be used to determine the status of input, output, flags
(memory bits) and data block double words.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the double words must be read.

dwordBufferPtr DWORD* The status information is stored in this buffer.

wCountDword WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields as double words that will be queried.

wDBNR WORD Number of double words to read. Up to a max. of 65535 double
words may be read with one call.

Error WORD* Number of double words to read. Up to a max. of 65535 double
words may be read with one call. If the double words being
read are the contents of a data block, the number of the DB
(1-65535) must be specified here. Otherwise, enter 0.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 62

Note:

It should be noted that the structure of the returned status values is as follows (example of
double word memory MD2):
MD2 consists of word memories MW2 and MW4, where MW2 represents the Hi-word. MW2 in
turn consists of the bytes MB2 and MB3. MW4 consists of the bytes MB4 and MB5. Thus, MD2
includes 4 bytes, i.e. MB2, MB3, MB4 and MB5.
It should also be noted that byte-oriented double word operands overlap. For this reason, the
function reads either all even or all odd double words or all the odd double words in the
specified area. This depends on the value specified in "wAddress". If you specify an even
number here (e.g. 10), all even-numbered double words are read. If, for example, the value
passed is 13, then all the odd double words read.
In fact, it only makes sense to read even-numbered double words, the option was left open to
cater for exceptions.

Example

In the example below the status information of the even numbered double word memories from
double word memory 0 are read from a communication partner. There are 5 double words to be
read. After the action, the status buffer contains the contents of double word memories MD0,
MD4, MD8, MD12 and MD16.

The example assumes that the initialisation functions (e.g. MPI6_OpenTcpIp) were completed
successfully. Similarly, the function MPI6_ConnectToPLC must have been executed without
errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.
.
.
.
//read data
if (!Fehler){
 DWORD StatusBuffer[100]={0};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_ReadDword(MPIHandle, Operand, 0, StatusBuffer,
 5, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "MD4 has the status (hex):
 %08X", StatusBuffer[1]);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 63

6.22 The function: MPI6_ReadTimer (not in the Lite-version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_ReadTimer function can be used to determine the status of timer blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

wAddress WORD Starting address from which the timer must be read.

wordBufferPtr WORD* The status information is stored in this buffer.

wCountTimer WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields as timers that will be queried.

Error WORD* Number of timers to read. Up to a max. of 65535 timers may be
read with one call. If the function returns '0’, an error has
occurred during execution. In this case, the Error parameter
contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Note:

The timer-word has the following structure:
Bit 0-9: BCD-coded time factor
Bit 12+13: time base (0=10ms, 1=100ms, 2=1s, 3=10s)

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 64

Example

In the example below, the status information of timers 0 to 4 is read from a communication
partner.

The example assumes that the initialisation functions (e.g. MPI6_OpenTcpIp) were completed
successfully. Similarly, the function MPI6_ConnectToPLC must have been executed without
errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 WORD StatusBuffer[10]={0};
 if (! MPI6_ReadTimer(MPIHandle, 0, StatusBuffer, 5, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Timer 1 has status (hex):
 %04X", StatusBuffer[1]);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 65

6.23 The function: MPI6_ReadCounter (not in the Lite-version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_ReadCounter function can be used to determine the status of counter blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

wAddress WORD Starting address from which the counter must be read.

wordBufferPtr WORD* The status information is stored in this buffer.

wCountCounter WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields as counters that will be queried.

Error WORD* Number of counters to read. Up to a max. of 65535 counters
may be read with one call. If the function returns '0’, an error
has occurred during execution. In this case, the Error
parameter contains an error value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Note:

The strcture of the counter word is as follows:

Bit 0-9: BCD-coded counter reading

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 66

Example

In the example below the status information of timers 0 to 4 is read from a communication
partner.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others.
Executing the function MPI6_CloseCommunication will terminate communications and eliminate
the instance.
In the same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 WORD StatusBuffer[10]={0};
 if (! MPI6_ReadCounter(MPIHandle, 0, StatusBuffer, 5, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Counter 1 has the status (hex):
 %04X", StatusBuffer[1]);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 67

6.24 The function: MPI6_MixRead_2

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_MixRead_2 function can be used to read the status of the operands in areas E, A, M,
DB, T and Z.
Here, the status of different operands can read by means of a single call and in no particular
order. For example, it is possible to read the status of input word EW2, clock memory MB10,
data word 2 of DB10 (DB10.DBW2) and timer block T2 by means of a call to the
MPI6_MixRead_2 function.
The function automatically optimises the request. Overlapping operands, duplicate requests,
etc. are detected and the protocol to the CPU is optimised accordingly.

This function can be used to read the status from different operand areas when different
addresses of an operand area must be read (e.g. MW0, MW100, MB150, etc.).

Restrictions of the Lite version

The Lite version can only read data from data blocks.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 68

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Op_Type DWORD* Array containing the types of the operands that must be read.
memory bits (flag) = 0x0101
Input = 0x1101
Output = 0x2101
Timer = 0x5401
Counter = 0x6401
DB data = 0x7101

Op_Address DWORD* Array containing the addresses of the operands that must be
read.

DBNr DWORD* Array containing the DB numbers when an operand consists of
a DB-data. For non-DB-data, the contents of the respective
Index=0.

Op_LengthByte DWORD* Array containing the respective lengths of the operands in
bytes. Permitted values are 1, 2 and 4.

Data DWORD* Array containing the returned status values for the operands.

wCountParam WORD The number of operands specified in the arrays.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The example below requests the status information of the operands MB10, DB2.DBW0 and
DB1.DBD100 from a communication partner.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others.
Executing the function MPI6_CloseCommunication will terminate communications and
eliminate the instance. This takes place in the same way as it was shown in the example of the
MPI6_ReadByte function.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 69

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //create the arrays
 DWORD Op_Type[3];
 DWORD Op_Address[3];
 DWORD Op_LengthByte[3];
 DWORD DBNr[3];
 DWORD Data[3];
 //enter MB10 into array index 0
 Op_Type[0]=0x0101; //clock memory
 Op_Address[0]=10; //address 10
 Op_LengthByte[0]=1; //length 1 byte
 DBNr[0]=0; //DB number=0 since this is not DB data
 //DB2.DBW0 im Array-Index 1 eintragen
 Op_Type[1]=0x7101; //DB data
 Op_Address[1]=0; //address 0
 Op_LengthByte[1]=2; //length 2 byte = 1 word
 DBNr[1]=2; //DB number=2
 //enter DB1.DBD100 into array-index 2
 Op_Type[2]=0x7101; //DB data
 Op_Address[2]=100; //address 100
 Op_LengthByte[2]=4; //length 4 bytes = 1 double word
 DBNr[2]=1; //DB number=1
 //the number of operands to read
 WORD wCountParam=3; //3 operands
 //call to the MixRead function
 if (! MPI6_MixRead_2(MPIHandleV6, Op_Type, Op_Address, DBNr,
 Op_LengthByte, Data, wCountParam, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "DB2.DBW0 has the status(hex): %04X",
 LOWORD(Data[1]));
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
 //
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 70

6.25 The function: MPI6_WriteBit_2

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteByte function can control the value of input, output, flags (memory bist) and
data block bits. This means that the operands can be set to the value passed by the function.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Note

The use of the MPI6_WriteBit_2 function is inefficient; it should only be used in exceptional
cases. The function should only be used when it is important to control a single bit without
affecting the other bits of the byte. In all other cases, the WriteByte, WriteWord or WriteDword
functions are preferable.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wByteAddress WORD Byte address of the bit operand. Example: 10 for M10.3

bBitAddress BYTE Byte address of the bit operand. Example: 3 for M10.3

bValue BYTE Specifies the control value. Permitted values are 0 and 1.

wDBNR WORD If the bit being controlled is a bit of a data block, the number of
the DB (1-65535) must be specified here. Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 71

Example

The example below sets memory bit M10.3 in the communication partner to the value 1.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.
.
.
.
//write data
if (!Fehler){
 BYTE SteuerWert=1;
 WORD wByteAddress=10;
 BYTE bBitAddress=3;
 WORD wDBNR=0;
 BYTE Operand=77; //clock memory ASCII-Code 77

 if (! MPI6_WriteBit_2(MPIHandle, Operand, wByteAddress,
 bBitAddress, SteuerWert, wDBNR, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 72

6.26 The function: MPI6_WriteByte

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteByte function can control the value of input, output, flags (memory bits) and
data block bytes. This means that the operands can be set to the value passed by the function.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the bytes must be written.

byteBufferPtr BYTE* This is the buffer where the control information is stored.

wCountBytes WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information that must be written.
The buffer must have the same number of fields as control
bytes that were specified.

wDBNR WORD Number of bytes to written. Up to a max. of 65535 bytes may
be written with one call. If the bytes being written are the
contents of a data block, the number of the respective DB
(1-65535) must be specified here. Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 73

Example

In the example below, clock memory bytes 0 to 9 in the communication partner are set to the
value FF (hex).
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. This
takes place in the same manner as it was shown in the example of the MPI6_ReadByte
function.
.
.
.
//write data
if (!Fehler){
 BYTE SteuernBuffer[10]={0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_WriteByte(MPIHandle, Operand, 0, SteuernBuffer,
 10, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 74

6.27 The function: MPI6_WriteWord

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteWord function can control the value of input, output, flag (memory bit) and data
block words. This means that the operands can be set to the value passed by the function.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the words must be written.

wordBufferPtr WORD* The control information is stored in this buffer.

wCountWord WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
the same number of fields as control words were specified.

wDBNR WORD Number of words to written. Up to a max. of 65535 words may
be written with one call. If the words being written are the
contents of a data block, the number of the DB (1-65535) must
be specified here. Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 75

Note:

It should be noted that the values specified in wordBufferPtr are written as follows (for example,
clock memory MW2):

MB 2 = HIBYTE(wordBufferPtr[0])
MB 3 = LOBYTE(wordBufferPtr[0])

It should also be noted that byte-oriented word operands overlap. For this reason, the function
either writes to all even or all odd words in the specified area. This depends on the value
specified in "wAddress". If you specify an even number here (e.g. 10), all even-numbered words
will be written. If the value passed is 13, all the odd words are written.
In fact, it only makes sense to write even-numbered words, the option was left open to cater for
exceptions.

Example

In the example below, clock memory words 30 to 38 in the communication partner are set to the
value 1F00(hex).
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. When the
MPI6_CloseCommunication function was executed, communications can be terminated and
the instance removed. This takes place in the same way as it was shown in the example of the
MPI6_ReadByte function.

.

.

.
//write data
if (!Fehler){
 WORD SteuernBuffer[5]={0x1F00, 0x1F00, 0x1F00, 0x1F00, 0x1F00};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_WriteWord(MPIHandle, Operand, 30, SteuernBuffer,
 5, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 76

6.28 The function: MPI6_WriteDword

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteDword function can control the value of input, output, flag (memory bit) and
data block double words. This means that the operands can be set to the value passed by the
function.
The Lite-Version only provides access to data blocks.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

operand BYTE The ASCII code for letters E, A, M, D defines the operand area,
which you want to read. Inputs = 69, outputs = 65, memory bits
(flags) = 77, data blocks = 68, VM area (only MICRO-version) =
86.

wAddress WORD Starting address from which the double words must be written.

dwordBufferPtr DWORD* The control information is stored in this buffer.

wCountDword WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
the same number of fields as control double words were
specified.

wDBNR WORD Number of double words to written. Up to a max. of 65535
double words may be written with one call. If the words being
written are the contents of a data block, the number of the DB
(1-65535) must be specified here. Otherwise, enter 0.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 77

Note:

It should be noted that the values specified in dwordBufferPtr are written as follows (for
example, double word memory MD2):

MB 2 = HIBYTE(HIWORD(dwordBufferPtr[0]))
MB 3 = LOBYTE(HIWORD(dwordBufferPtr[0]))
MB 4 = HIBYTE(LOWORD(dwordBufferPtr[0]))
MB 5 = LOBYTE(LOWORD(dwordBufferPtr[0]))

It should also be noted that byte-oriented word operands overlap. For this reason, the function
reads either all even double words or all the odd double words in the specified area. This
depends on the value specified in "wAddress". If you specify an even number here (e.g. 10), all
even-numbered double words are written. If the value passed is 13, all the double odd words
are written.
In fact, it only makes sense to write even-numbered double words, the option was left open to
cater for exceptions.

Example

In the example below, memory double words 10 and 14 in the communication partner are set to
the value 11223344(hex).
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//write data
if (!Fehler){
 DWORD SteuernBuffer[2]={0x11223344, 0x11223344};
 BYTE Operand=77; //clock memory ASCII-Code 77
 if (! MPI6_WriteDword(MPIHandle, Operand, 10, SteuernBuffer,
 2, 0, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 78

6.29 The function: MPI6_WriteTimer (Not in Lite-Version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteTimer function can be used to control the value of timer blocks. This means
that the timer can be set to the value passed by the function.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

wAddress WORD Starting address of the timer that must be controlled.

wordBufferPtr WORD* The control information is stored in this buffer.

wCountTimer WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields, as timers were specified to be controlled.
Number of timers to write. Up to a max. of 65535 timers may
be written with one call.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Note:

The timer-word has the following structure:
Bit 0-9: BCD-coded time factor
Bit 12+13: time base (0=10ms, 1=100ms, 2=1s, 3=10s)

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 79

Example

The example below writes the value 100 (hex) to timers 3-9 in the communication partner.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//write data
if (!Fehler){
 WORD SteuernBuffer[7]={0x100, 0x100, 0x100, 0x100, 0x100, 0x100,
 0x100};
 if (! MPI6_WriteTimer(MPIHandle, 3, SteuernBuffer, 7, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 80

6.30 The function: MPI6_WriteCounter (Not in Lite-Version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteCounter function can be used to control the value of counter blocks. This
means that the counter can be set to the value passed by the function.
If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

wAddress WORD Starting address of the counter that must be controlled.

wordBufferPtr WORD* The control information is stored in this buffer.

wCountCounter WORD You must ensure that the size of the buffer is sufficient to
accommodate all the status information. The buffer must have
as many fields, as counters were specified to be controlled.
Number of counters to write. Up to a max. of 65535 counters
may be written with one call.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Note:

The structure of the counter word is as follows:
Bit 0-9: BCD-coded counter value

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 81

Example

The example below writes the value 10 (hex) to timers 10 to 21 in the communication partner.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//write data
if (!Fehler){
 WORD SteuernBuffer[12]={0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
 0x10, 0x10, 0x10, 0x10, 0x10, 0x10};
 if (! MPI6_WriteCounter(MPIHandle, 10, SteuernBuffer, 12
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control was successful!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 82

6.31 The function: MPI6_MixWrite_2

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_MixWrite_2 function can be used to control the operands in the areas E, A, M, DB, T
and Z, i.e. to set these to the specified value.
Here, the control of different operands can occur by means of a single call and in no particular
order. For example, it is possible to control input word IW2, flags (memory bits) MB10, data
word 2 of DB10 (DB10.DBW2) and timer block T2 by means of a single call to the
MPI6_MixWrite_2 function.
The function automatically optimises the control request. Overlapping operands, duplicate
requests, etc. are detected and the protocol to the CPU is optimised accordingly.

This function can be used to control different operand areas when different addresses of an
operand area must be written (e.g. MW0, MW100, MB150, etc.).

Restrictions of the Lite version

The Lite version can only control data from data blocks.

If the CPU is protected by a password, this does not have to be transferred.

PLC family S7-1500®, S7-1200® and LOGO!
This function can also be used for the CPUs of the S7-1500®, S7-1200® series. However, DBs
may not have been generated with the option "only symbolically addressable".
There are no Data-blocks in the LOGO!. With a LOGO!® you have access to inputs, outputs,
flags and VM area. The access to LOGO! is only possible in the MICRO version of ComDrvS7.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 83

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Op_Type DWORD* Array containing the types of the operands that must be
controlled.
memory bit (flag) = 0x0101
Input = 0x1101
Output = 0x2101
Timer = 0x5401
Counter = 0x6401
DB data = 0x7101

Op_Address DWORD* Array containing the addresses of the operands that must be
controlled.

DBNr DWORD* Array containing the DB numbers when an operand consists of
a DB-data. For non-DB-data, the contents of the respective
Index=0.

Op_LengthByte DWORD* Array containing the respective lengths of the operands in
bytes. Permitted values are 1, 2 and 4.

Data DWORD* Array with the control values for the operands.

wCountParam WORD The number of operands specified in the arrays.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The example below controls the operands MB10, DB2.DBW0 DB1.DBD100 in the CPU to set
them to the target values.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 84

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 DWORD Op_Type[3];
 DWORD Op_Address[3];
 DWORD Op_LengthByte[3];
 DWORD DBNr[3];
 DWORD Data[3];
 //MB10: enter data into array index 0
 Op_Type[0]=0x0101; //clock memory
 Op_Address[0]=10; //address 10
 Op_LengthByte[0]=1; //length 1 byte
 DBNr[0]=0; //DB number=0 since this is not DB data
 Data[0]=0x33; //control value
 //DB2.DBW0: enter data into array index 1
 Op_Type[1]=0x7101; //DB data
 Op_Address[1]=0; //address 0
 Op_LengthByte[1]=2; //length 2 byte = 1 word
 DBNr[1]=2; //DB number=2
 Data[1]=0x1122; //control value
 //DB1.DBD100: enter data into array index 2
 Op_Type[2]=0x7101; //DB data
 Op_Address[2]=100; //address 100
 Op_LengthByte[2]=4; //length 4 bytes = 1 double word
 DBNr[2]=1; //DB number=1
 Data[2]=0x55667788; //control value
 //Number of operands to be controlled
 WORD wCountParam=3; //3 operands
 //call to the MixWrite function
 if (! MPI6_MixWrite_2(MPIHandleV6, Op_Type, Op_Address, DBNr,
 Op_LengthByte, Data, wCountParam, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Control executed successfully.", "",
 MB_ICONINFORMATION);
 }//end else
 //
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 85

6.32 The function: MPI6_WriteBit (not in the Lite-version)

This function is only available for compatibility reasons. For new applications, the
MPI6_WriteBit_2 function should be used!

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteBit function can be used to change the contents of a bit in operand areas input,
output, clock memory and data.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Note

The use of the MPI6_WriteBit function is ineffective; it should only be used in exceptional
cases. The function should only be used when it is important to control a single bit without
affecting the other bits of the byte. In all other cases, the WriteByte, WriteWord or WriteDword
functions are preferable.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

ByteAddress WORD Indicates the byte address where the bit operand is located.
Specify e.g. '0'

BitAddress WORD Specifies the bit address that mast be accessed. Range 0 - 7.

DBNr WORD When a data bit is affected, the DBNummer specifies the
number of the data block that contains the data bit. If this
specification does not refer to a data bit, then the DBNummer
must be set to '0'.

Operand char These parameters must pass the operand in uppercase letters,
where: "E" = inputs, "A" = outputs, "M" = memory bits (flags),
"D" = data bits in DB

WriteBuffer WORD* Specify the control value (0 or 1) in this buffer.

Error WORD* If the function returns '0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 86

Example

The example below sets memory bit M10.1 in the communication partner to the value 1.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//write data
if (!Fehler){
 WORD SteuerWert=1;
 if (! MPI6_WriteBit(MPIHandle, 10, 1, 0, 'M', &SteuerWert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "Operand M10.1 was controlled"
 "successfully!", "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 87

6.33 The function: MPI6_WriteDBFromWldToPlc (not in the Lite- and
CE-versions)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_WriteDBFromWldToPlc function can be used to
transfer a data block that is contained in a WLD file into the CPU. WLD files are created and
filled with blocks by S7 programming systems (e.g. Simatic-Manager and WinSPS-S7). The S7
programming systems are also able to read and edit modules from WLD files.
Together with the MPI6_ReadDBFromPlcAndWriteToWld function, you can load ComDrvS7
data blocks from the CPU, save them on the PC and write them to the CPU if required.
In addition to backing up data, this can also be used to realize a type of recipe management.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

WldFileWithPath char* Specification of the WLD file with path from which the DB must
be retrieved to transfer it to the CPU. For example,
"C:\ProjektDBs.WLD"

DBNr WORD The number of the DB that must be transferred to the CPU.

OverwriteIfExist BYTE This parameter determines whether a DB that already exists in
the CPU should be overwritten. If this is set to 1, the DB is
overwritten . When this is set to 0, a DB that exists in the CPU
is not overwritten and the function returns error value 713.

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 88

Example

The following example reads DB2 from a WLD file that is named "Test_Datei.wld" and that is
located in the path "D:\MPI6_Testprojekt\" and transfers this to the CPU. If DB2 should already
exist in the CPU, then this must be overwritten.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 WORD Error=0;
 char ErrorString[255]={0};
 char WldFileWithPath[555]={0};
 BYTE OverwriteIfExist=1; //overwrite a DB that exists
 //in the CPU
 WORD wDBNR=2; //DB2 must be transferred
 //specify the WLD file with path
 strcpy(WldFileWithPath, "D:\\MPI6_Testprojekt\\Test_Datei.wld");
 //Execute the transfer of the DB from the WLD file into the CPU
 if (! MPI6_WriteDBFromWldToPlc(MPIHandleV6, WldFileWithPath, wDBNR,
 OverwriteIfExist, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(AppHandle, "DB was written successfully.", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 89

6.34 The function: MPI6_ReadDBFromPlcAndWriteToWld (Not in the
Lite- and CE-Version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_ReadDBFromPlcAndWriteToWld function can be used to load a data block from a
CPU to save it to a WLD file on your PC.
The S7 programming systems (e.g. Simatic?-Manager or WinSPS-S7) can read and edit
modules from WLD files.
Together with the MPI6_WriteDBFromWldToPlc function, you can load ComDrvS7 data blocks
from the CPU, save them on the PC and write them back to the CPU if required.
In addition to backing up data, this can also be used to realize a type of recipe management.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

WldFileWithPath char* Specification of the WLD file with path to which the DB
retrieved from the CPU must be written. The path must exist;
the WLD file is created if it does not exist. For example,
"C:\ProjektDBs.WLD"
For an existing WLD file must not contain a DB with the same
number. If this is the case, the function returns the error value
717.

DBNr WORD Number of DB that is to be loaded from the CPU and written to
the WLD file.

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 90

Example

The following example reads DB2 from the CPU and writes it to a WLD file that is named
"Test_Datei.wld" and that is located in the path "D:\MPI6_Testprojekt\".

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 WORD Error=0;
 char ErrorString[255]={0};
 char WldFileWithPath[555]={0};
 WORD wDBNR=2; //DB2 must be retrieved from the CPU
 //specify the WLD file with path
 strcpy(WldFileWithPath, "D:\\MPI6_Testprojekt\\Test_Datei.wld");
 //Read the DBs from the CPU and save it to the WLD file
 if (! MPI6_ReadDBFromPlcAndWriteToWld(MPIHandleV6, WldFileWithPath,
 wDBNR, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(Application->Handle, "Read the DBs from the CPU"
 "and saving to the WLD was successful.", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 91

6.35 The function: MPI6_GetDBNrInWldFile (Not in the Lite- and
CE-Version)

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetDBNrInWldFile function can be used to identify data blocks that exist in a WLD
file.
WLD files are created and filled with blocks by S7 programming systems (e.g. Simatic-Manager
and WinSPS-S7). The S7 programming systems are also able to read and edit modules from
WLD files.
The MPI6_ReadDBFromPlcAndWriteToWld and MPI6_WriteDBFromWldToPlc functions you
can load ComDrvS7 data blocks from a CPU, save them on the PC and write them back to the
CPU if required.
In addition to backing up data, this can also be used to realize a type of recipe management.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

WldFileWithPath char* Specifies the WLD-file with its path in which the existing DB
must be determined. This file must exist.

DBNrArray WORD* In this array, the numbers of the DBs in the WLD file are
returned. The array must have as many or more fields as are
specified in the parameter MaxDBNumbers.

wcountDB WORD* Number of data blocks found in the WLD file.

MaxDBNumbers WORD Maximum number of DB numbers to be returned. The array
DBNrArray must at least have been designed for this number
of DBs.

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 92

Example

The example below determines the existing data blocks from the WLD file named
"Test_Datei.wld" which is located in the path "D:\MPI6_Testprojekt\".

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
exexuted successfully.

.

.

.
 //
 WORD Error=0;
 char ErrorString[255]={0};
 char WldFileWithPath[555]={0};
//specify the WLD file with path
 strcpy(WldFileWithPath, "D:\\MPI6_Testprojekt\\Test_Datei.wld");
 //Read the DBs from the CPU and save it to the WLD file
 WORD wcountDB=0; //this variable returns the number of DBs
 WORD DBNrArray[100]; //array for existing DB numbers
 WORD MaxDBNumbers=100; //the array for a max. of 100 DB numbers
 if (! MPI6_GetDBNrInWldFile(MPIHandleV6, WldFileWithPath, DBNrArray,
 &wcountDB, MaxDBNumbers, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "The WLD file contains %u DBs.",
 wcountDB);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
 //
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 93

6.36 The function: MPI6_ReadPlcClock

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_ReadPlcClock function can be used to read the current date and time from the CPU.
The date and time is returned in the format Date-and-Time. In addition, a string specifying the
function will be provided.

The structure of the Date-and-Time format is as follows:

Byte position Description

n year 0-99

n+1 month 1-12

n+2 day 1-31

n+3 hour 0-23

n+4 minute 0-59

n+5 second 0-59

n+6 millisecond 0-999
+ weekday (1-7)n+7

All data is in BCD coded. Weekday: 1=Sunday, 7=Saturday.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

byteBufferPtr BYTE* Array that returns the date and time from the CPU in the format
Date-and-Time. The length of this array must be 8 bytes or
more.

DtString char* This supplies the date and the time as a string of the form
"2009-02-25-21:58:11.478".

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 94

Example

The example below reads the date and time from the CPU.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 BYTE byteBufferPtr[8]={0}; //buffer for the format Date-and-Time
 char DTStr[255]={0}; //returned setting as string
 //
 if (! MPI6_ReadPlcClock(MPIHandleV6, byteBufferPtr, DTStr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Datum Uhrzeit in der CPU: %s", DTStr);
 MessageBox(ApplHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 95

6.37 The function: MPI6_WritePlcClock

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In addition, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting must
also have been successful.

Brief description

The MPI6_WritePlcClock function can be used to set the date and time in the CPU.
The date and time must be specified in the format Date-and-Time.

The structure of the Date-and-Time format is as follows:

Byte position Description

n year 0-99

n+1 month 1-12

n+2 day 1-31

n+3 hour 0-23

n+4 minute 0-59

n+5 second 0-59

n+6 millisecond 0-999
+ weekday (1-7)n+7

All data is in BCD coded. Weekday: 1=Sunday, 7=Saturday.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

byteBufferPtr BYTE* Array where the date and time for the CPU must be specified in
the format Date-and-Time. The length of this array must be 8
bytes or more.

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 96

Example

In the example below, the date in the CPU is set to 31.05.2009 and the time to 12:33, 10
seconds and 333 milliseconds.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 BYTE byteBufferPtr[8]={0};
 byteBufferPtr[0]=0x09; //year 2009
 byteBufferPtr[1]=0x05; //month 5
 byteBufferPtr[2]=0x31; //day 31
 byteBufferPtr[3]=0x12; //hour 12
 byteBufferPtr[4]=0x33; //minute 33
 byteBufferPtr[5]=0x10; //second 10
 byteBufferPtr[6]=0x33; //milliseconds 333 specification 1
 byteBufferPtr[7]=0x31; //milliseconds 333 specifiaction 2 day = 1
 //
 if (! MPI6_WritePlcClock(MPIHandleV6, byteBufferPtr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "Date and time was saved.", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 97

6.38 The function: MPI6_CopyRamToRom

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_CopyRamToRom function can be used to transfer the actual values of the data
blocks from the CPUs memory into the load memory. This means that these values are
retained even when you issue a master reset to the CPU.
For example, this function may be executed if you have changed the values in a DB by means
of PLC commands or by control functions via ComDrvS7 and if these values should remain
active after a master reset.

This function can only be executed when the CPU is in STOP mode. If the CPU is not in STOP
mode, you can set it to STOP mode with the MPI6_SetPLCToStop function.

The execution of this function may require a few minutes (depending on available memory).

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 98

Example

The example below executes the function copy RAM-to-ROM in the CPU. To start with, the
CPU must be in STOP mode.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //test whether CPU is in RUN mode
 bool PlcInRun=false;
 if (! MPI6_IsPLCInRunMode(MPIHandleV6, &PlcInRun, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
 }//end if
 //
 if (PlcInRun){
 MessageBox(ApplHandle, "Action not valid in RUN mode!", "",
 MB_ICONINFORMATION);
 return;
 }//end if
 //
 if (! MPI6_CopyRamToRom(MPIHandleV6, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "The action was executed.", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 99

6.39 The function: MPI6_PLCHotRestart or MPI6_CPUWiederanlauf

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_PLCHotRestart and MPI6_CPUWiederanlauf functions issue a restart command to
the CPU. The condition is that the CPU supports a restart (S7-400 with the appropriate
hardware configuration) and that the mode selector is in position RUN.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

Im folgenden Example wird bei der CPU ein Wiederanlauf ausgelöst.
Im Example wird davon ausgegangen, dass eine der Einleitungsfunktionen (z.B.
MPI6_OpenTcpIp) erfolgreich ausgeführt wurde. Ebenso muss die Funktion
MPI6_ConnectToPLC ohne Fehler ausgeführt worden sein. Nach der Aktion können weitere

folgen. Durch Ausführen der Funktion MPI6_CloseCommunication kann die Kommunikation
beendet und die Instanz beseitigt werden. So wie dies im Example für die Funktion
MPI6_ReadByte gezeigt wurde.
.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 if (! MPI6_CPUWiederanlauf(MPIHandleV6, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "Aktion wurde ausgeführt.", "",
 MB_ICONINFORMATION);
 }//end else
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 100

6.40 The function: MPI6_PLCWarmRestart or MPI6_CPUNeustart

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_PLCWarmRestart or MPI6_CPUNeustart functions result in a restart of the CPU,
provided that the mode selector is in position RUN.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

The example below triggers a restart of the CPU.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others.
Executing the function MPI6_CloseCommunication terminates communications and
eliminates the instance. In the same way as it was shown in the example of the
MPI6_ReadByte function.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 if (! MPI6_CPUNeustart(MPIHandleV6, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "Action was executed.", "",
 MB_ICONINFORMATION);
 }//end else
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 101

6.41 The function: MPI6_SetPLCToStop

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_SetPLCToStop functions change the status of the CPU to STOP.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Example

In the example below, the status of the CPU is set to STOP.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully.
Similarly, the function MPI6_ConnectToPLC must have been executed without errors. The

action may be followed by others. Executing the function MPI6_CloseCommunication
terminates communications and eliminates the instance. In the same way as it was shown in
the example of the MPI6_ReadByte function.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //
 if (! MPI6_SetPLCToStop(MPIHandleV6, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "Action was executed.", "",
 MB_ICONINFORMATION);
 }//end else
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 102

6.42 The function: MPI6_IsPLCInRunMode

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_IsPLCInRunMode function determines the status of the CPU and returns a value '1'
in parameter PlcInRun if the CPU is in RUN mode.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which is being
accessed (not required for the .Net wrapper class).

PlcInRun BOOL* If this parameter contains '1', the CPU is in RUN mode.

Error WORD* If the function returns ‘0’, an error has occurred during
execution. In this case, the Error parameter contains an error
value.

Function return BOOL If the function was executed successfully, a value '1'(TRUE) is
returned. When an error has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 103

Example

The example below tests whether the CPU is in RUN mode.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //Ist die CPU in RUN
 bool PlcInRun=false;
 if (! MPI6_IsPLCInRunMode(MPIHandleV6, &PlcInRun, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
 }//end if
 //
 if (PlcInRun){
 MessageBox(ApplHandle, "CPU ist in RUN mode!", "",
 MB_ICONINFORMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "CPU is not in RUN mode!", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 104

6.43 The function: MPI6_GetSystemValues

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetSystemValues function can be used to read the system areas from a CPU. For
example, this can provide information on the number of timers, counters and clock memories
that are available for programming.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

CountByteProcessImageInputs WORD* This returns the number of bytes of the process
image of the inputs.

CountByteProcessImageOutputs WORD* This returns the number of bytes of the process
image of the outputs.

CountByteBitMemory WORD* This returns the number of memory bytes that
are available in the connected PLC.

CountTimer WORD* This returns the number of timers that are
available in the connected PLC.

CountCounter WORD* This returns the number of counters that are
available in the connected PLC.

CountByteWorkMemory DWORD* Returns the number of memory bytes in the
CPU.
Attention: In the old versions of ComDrvS7,
this parameter had the type WORD, i.e. it
was only 16 bit wide!

CountByteLocalData WORD* Returns the entire local data area of the CPU in
bytes.

Error WORD* If the function returns ‘0’, an error has occurred
during execution. In this case, the Error
parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error has
occurred, the returned value is '0' (FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 105

Example

The example below reads the system areas from the communication partner.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 WORD AnzahlBytePAE, AnzahlBytePAA, AnzahlMerker, AnzahlZeiten;
 WORD AnzahlZaehler;
 DWORD AnzahlByteRam;
 WORD AnzahlByteLokaldaten;
 //
 if (! MPI6_GetSystemValues(MPIHandle, &AnzahlBytePAE,
 &AnzahlBytePAA,

 &AnzahlMerker, &AnzahlZeiten,
 &AnzahlZaehler,
 &AnzahlByteRam,
 &AnzahlByteLokaldaten,

 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};

 wsprintf(AusgabeStr,
 "Number of bytes PAE: %03u\n"

 "Number of bytes PAA: %03u\n"
 "Number of clock memories: %03u\n"
 "Number of timers : %03u\n"
 "Number of counters : %03u\n",
 AnzahlBytePAE, AnzahlBytePAA, AnzahlMerker,

 AnzahlZeiten, AnzahlZaehler);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONEXCLAMATION);
 }//end else
}//end if
.
.
.

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, A communication error may result.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 106

6.44 The function: MPI6_GetLevelOfProtection

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetLevelOfProtection function can be used to determine the protection levels that
were defined for a CPU. The position of the key switch on the CPU is also returned.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

LevelModeSwitch WORD* Protection level on the mode selector/key
switch (possible values??: 1, 2 or 3)

ParameterizedProtectionLevel WORD* configured protection level (possible values: 0,
1, 2 or 3. 0 means that no password was
assigned, the configured protection level is
invalid)

LevelPlc WORD* Valid protection level of the CPU (possible
values: 1, 2 or 3)

ModeSwitchPosition WORD* Returns the position of the mode selector/key
switch of the CPU. Possible contents:
0=STOP, 1=RUN, 2=RUN-P.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, A communication error may result.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 107

Example

The example below transfers the position of the key switch the communication partner as a
string.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was

completed successfully. Similarly, the function MPI6_ConnectToPLC must have been

executed without errors. The action may be followed by others. Executing the function

MPI6_CloseCommunication will terminates communications and eliminate the instance. In the

same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 WORD SchutzstufeSchluesselSchalter, ParametrierteSchutzstufe;
 WORD CPUSchutzstufe;
 WORD SchluesselschalterStellung=0;
 //
 if (! MPI6_GetLevelOfProtection(MPIHandle,

 &SchutzstufeSchluesselSchalter,
 &ParametrierteSchutzstufe,

 &CPUSchutzstufe,
 &SchluesselschalterStellung,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 switch(SchluesselschalterStellung){
 case 0: MessageBox(AppHandle, "Switch position:
 STOP", "", MB_ICONEXCLAMATION);
 break;
 case 1: MessageBox(AppHandle, "Switch position:"
 "RUN", "", MB_ICONEXCLAMATION);
 break;
 case 2: MessageBox(AppHandle, "Switch position:"
 "RUN-P", "", MB_ICONEXCLAMATION);
 break;
 default: MessageBox(AppHandle, "Switch position:"
 "unknown", "",
 MB_ICONEXCLAMATION);
 }//end switch
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 108

6.45 The function: MPI6_GetOrderNrPlc

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetOrderNrPlc function can be used to determine the order number of a CPU.

LOGO!

This function is not possible.

Description of the parameters

Argument Typ Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

OrderNrStr char* Here, the order number of the CPU is
returned as a null-terminated string.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel".
If another communication instance should also accesses an information function of the same
CPU, A communication error may result.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 109

Example

The example shown below determines the order number of a CPU.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others.
Executing the function MPI6_CloseCommunication will terminates communications and
eliminate the instance. In the same way as it was shown in the example of the MPI6_ReadByte
function.

.

.

.
//read data
if (!Fehler){
 char BestellNr[100]={0};
 //
 if (! MPI6_GetOrderNrPlc(MPIHandle, BestellNr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Order no.: %s", BestellNr);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 110

6.46 The function: MPI6_CanPlcSendIdentData

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_CanPlcSendIdentData function can be used to determine whether the connected
CPU is capable of supplying identification data. For this reason, the function should be
executed before the MPI6_GetPlcIdentData function if it cannot be guaranteed that the
connected CPU supports this feature.
The Siemens S7-300? series of CPUs support this feature from firmware version 2.6.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument Typ Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

PlcCanSendData bool* Returns a value 1, if the CPU supports the
request for identification data. Otherwise, the
value 0 is returned.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, A communication error may result.

Example

See the example on the MPI6_GetPlcIdentData function

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 111

6.47 The function: MPI6_GetPlcIdentData

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

If it is doubtful that the connected CPU can supply the identification data, the
MPI6_CanPlcSendIdentData function must be executed first. The Siemens S7-300? series of
CPUs support this feature from firmware version 2.6.

Brief description

The MPI6_GetPlcIdentData function returns the unique serial number of the connected CPU as
well as the serial number of the MMC card that is available in the CPU. This enables you to
identify the connected CPU clearly. It is also possible to read the text items that may be defined
in the hardware configuration of the CPU, i.e. the CPU name, the station name, the plant
identification and the location identifier.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 112

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

PlcName char* Returns the station name defined in the
hardware configuration of the CPU or,
alternatively, an empty string if this was not
defined.

ModuleName char* Returns the CPU name defined in the
hardware configuration of the CPU or,
alternatively, an empty string if this was not
defined.

PlantDesignation char* Returns the system identification that was
defined in the hardware configuration for the
CPU or alternatively, an empty string, if this
was not defined.

LocationIdentifier char* Returns the location identification that was
defined in the hardware configuration for the
CPU or, alternatively, an empty string, if this
was not defined.

SerialNrPlcStr char* Returns the serial number of the connected
CPU.

MMCIdentNrStr char* Returns the serial number of the MMC-card
that was installed in the CPU.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, a communication error may result.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 113

Example

The example below reads the identification data from the CPU, if the CPU supports this
function. First, the CPU is checked whether it supports this function and, on a positive
response, the data is loaded from the CPU.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance.
In the same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
bool AbfrageMoeglich=false;
if (! MPI6_CanPlcSendIdentData(MPIHandle, &AbfrageMoeglich, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
//
if (AbfrageMoeglich){
 char NameDerStation[100]={0};
 char NameDerCPU[100]={0};
 char AnlagenKennzeichnung[100]={0};
 char OrtsKennzeichnung[100]={0};
 char SerienNummerCPU[100]={0};
 char MMCIdentNr[100]={0};
 //
 if (! MPI6_GetPlcIdentData(MPIHandle, NameDerStation, NameDerCPU,
 AnlagenKennzeichnung, OrtsKennzeichnung,
 SerienNummerCPU, MMCIdentNr, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Serial number of the CPU: %s",
 SerienNummerCPU);
 MessageBox(Handle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 114

6.48 The function: MPI6_GetPlcErrorLED

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In addition, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting must
also have been successful.

Brief description

The MPI6_GetPlcErrorLED function returns the status of the error LEDs SF, BF1 and BF2. This
can be used to determine whether a system error or a bus error is present at the CPU. The
programmer can then respond accordingly in the PC program. In spite of these errors, the CPU
can be in RUN mode if the PLC program contains the respective error OBs.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance, which
is being accessed (not required for the .Net
wrapper class).

SF_LED_Status BYTE* This contains a value 1 if the SF LED on the CPU
is on or if it flashes.

SF_LED_FlashingFrequency BYTE* 0 = steady light, when the SF_LED_Status
contains 1
1 = flashes normally at 2 Hz
2 = flashes slowly at 0.5 Hz

BUS1F_LED_Status BYTE* This contains a value 1 if the BF1 LED on the
CPU is on or if it flashes.

BUS1F_LED_FlashingFrequency BYTE* 0 = permanently on when BUS1F_LED_Status is
set to 1
1 = flashes normally at 2 Hz
2 = flashes slowly at 0.5 Hz

BUS2F_LED_Status BYTE* This contains a value 1, if the BF2 LED on the
CPU is on or if it flashes.

BUS2F_LED_FlashingFrequency BYTE* 0 = permanently on when BUS2F_LED_Status is
set to 1
1 = flashes normally at 2 Hz
2 = flashes slowly at 0.5 Hz

Error WORD* If the function returns ‘0’, an error has occurred
during execution. In this case, the Error
parameter contains an error value.

Function return BOOL If the function was executed successfully, a value
'1'(TRUE) is returned. When an error has
occurred, the returned value is '0' (FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 115

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, a communication error may result.

Example

The example below reads the status of the error LEDs on the CPU.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
BYTE SF_LED_Status=0;
BYTE SF_LED_BlinkFrequenz=0;
BYTE BUS1F_LED_Status=0;
BYTE BUS1F_LED_BlinkFrequenz=0;
BYTE BUS2F_LED_Status=0;
BYTE BUS2F_LED_BlinkFrequenz=0;
//
if (! MPI6_GetPlcErrorLED(MPIHandle,
 &SF_LED_Status, &SF_LED_BlinkFrequenz,
 &BUS1F_LED_Status, &BUS1F_LED_BlinkFrequenz,
 &BUS2F_LED_Status, &BUS2F_LED_BlinkFrequenz,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Status der SF-LED: %s", SF_LED_Status);
 MessageBox(Handle, AusgabeStr, "", MB_ICONINFORMATION);
}//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 116

6.49 The function: MPI6_IsPasswordRequired

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully. In additions, the call to the function MPI6_ConnectToPLC or
MPI6_ConnectToPLCRouting must also have been successful.

Brief description

The MPI6_IsPasswordRequired function can be used to determine whether read and/or write
operations for the CPU require a password, i.e. whether the CPU is protected by a password.
This function must be used if you are unsure whether a password must be transferred or not.
An error will be produced if you should transfer a password to the CPU when this is not actually
password protected.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Note

A password is not required for the ComDrvS7 functions ReadByte, ReadWord, ReadDword,
ReadTimer, ReadCounter, WriteByte, WriteWord, WriteDword, WriteTimer, WriteCounter,
MixRead_2 and MixWrite_2.

Description of the parameters

Argument Typ Description

Handle INT The handle of the communication instance, which is
being accessed (not required for the .Net wrapper
class).

PasswordRequired bool* Returns a value of 1 if the specified mode requires
a password. Returns 0, if the specified mode
requires a password.

Mode BYTE Transfer 'R' (or the ASCII code 82 dec.) to query
the read mode.
Transfer 'R' (or the ASCII code 87 dec.) to query
the write mode.

Error WORD* If the function returns ‘0’, an error has occurred
during execution. In this case, the Error parameter
contains an error value.

Function return BOOL If the function was executed successfully, a value
'1'(TRUE) is returned. When an error has occurred,
the returned value is '0' (FALSE).

Note:
The data for this information function are provided by the virtual CPU. The CPU is only able to
do this once "in parallel". If another communication instance should also accesses an
information function of the same CPU, A communication error may result.

Example: See the example for MPI6_SendPasswordToPlc.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 117

6.50 The function: MPI6_SendPasswordToPlc

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully. In additions, the call to the function MPI6_ConnectToPLC or
MPI6_ConnectToPLCRouting must also have been successful.

Brief description

The MPI6_SendPasswordToPlc function can be used to transfer a password to the CPU to
enable read/write operations on a password-protected CPU. If you are not sure whether the
access mode of the CPU is protected by a password, you must first check this condition with
the MPI6_IsPasswordRequired function. If you are certain that an access password is
required,

Important!

The password remains valid until the connection with the CPU is interrupted. If you are writing
several times to the password-protected CPU, this means that the password must only be
passed once. The condition is, that the communication link to the CPU is not interrupted.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Note

A password is not required for the ComDrvS7 functions ReadByte, ReadWord, ReadDword,
ReadTimer, ReadCounter, WriteByte, WriteWord, WriteDword, WriteTimer, WriteCounter,
MixRead_2 and MixWrite_2.

Description of the parameters

Argument Typ Description

Handle INT The handle of the communication instance, which is
being accessed (not required for the .Net wrapper
class).

PasswordStr char* Password (8 characters max.) that protects the
CPU. The password protection and the password
itself are defined in the hardware configuration of
the CPU.

PasswordIsCorrect bool* Returns a 1, if the password that was passed is
correct.
Returns a 0, if the password is bad.

Error WORD* If the function returns ‘0’, an error has occurred
during execution. In this case, the Error parameter
contains an error value.

Function return BOOL If the function was executed successfully, a value
'1'(TRUE) is returned. When an error has occurred,
the returned value is '0' (FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 118

Example

The following example checks whether the CPU has a write protection feature. After that, the
password is passed to the CPU.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
bool PasswortUebergabeNotwendig=false;
BYTE Modus='W'; //write mode
if (! MPI6_IsPasswordRequired(MPIHandle,
 &PasswortUebergabeNotwendig, Modus, &Error)){

 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
if (PasswortUebergabeNotwendig){
 //
 char PasswortStr[20]={0};
 bool PasswortIstKorrekt=false;
 strcpy(PasswortStr, "Test"); //CPU is configured for the
 //password 'Test'
 if (! MPI6_SendPasswordToPlc(MPIHandle, PasswortStr,
 &PasswortIstKorrekt, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 if (PasswortIstKorrekt)
 MessageBox(Handle, "The password is correct.", "",
 MB_ICONINFORMATION);
 else
 MessageBox(Handle, "The password is incorrect!", "",
 MB_ICONSTOP);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 119

6.51 The function: MPI6_GetCountDB

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The function MPI6_GetCountDB can be used to determine the number of DBs in a CPU.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

CountDB int* This parameter returns the number of DBs
that are available in the CPU.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 120

Example

The example below determines the number of data blocks in the connected communication
partner.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.
.
.
.
//read data
if (!Fehler){
 int AnzahlDB=0;
 //
 if (! MPI6_GetCountDB(MPIHandle, &AnzahlDB, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Number of DBs availabe: %u", AnzahlDB);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.

.

.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 121

6.52 The function: MPI6_GetDBInPlc

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetDBInPlc function can be used to determine the numbers of the data blocks that
exist in a CPU.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

DBNumbers WORD* WORD-Array that is used to return the
numbers of the DBs that exist in the CPU.

CountDB INT* Number of DBs that was entered into the
WORD-Array.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 122

Example

The example below displays the number of the first DB that exists in the CPU.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
//read data
if (!Fehler){
 int AnzahlDB=0;
 WORD DBNummern[255]={0};
 //
 if (! MPI6_GetDBInPlc(MPIHandle, DBNummern, &AnzahlDB, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 if (AnzahlDB>0){
 wsprintf(AusgabeStr, "First available DB: %u",
 DBNummern[0]);
 MessageBox(AppHandle, AusgabeStr, "",
 MB_ICONINFORMATION);
 }//end if
 else
 MessageBox(AppHandle, "First available DB!", "",
 MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 123

6.53 The function: MPI6_GetLengthDB

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.
In additions, the call to the function MPI6_ConnectToPLC or MPI6_ConnectToPLCRouting
must also have been successful.

Brief description

The MPI6_GetLengthDB function can be used to determine the length of a data block that
exists in the CPU. The length is returned in bytes.

PLC family S7-1500®, S7-1200® and LOGO!

This function is not possible.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

DBNr WORD The number of the DB of which the length is
to be determined.

CountByte WORD* Length of the DB in bytes.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 124

Example

The example below determines the length of DB1 in the communication partner.
The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.
.
.
.
//read data
if (!Fehler){
 WORD LaengeInByte=0;
 //
 if (! MPI6_GetLengthDB(MPIHandle, 1, &LaengeInByte, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Length of DB1: %u Byte", LaengeInByte);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 125

6.54 The function: MPI6_ChangeProtocolTypeForV5Functions

Conditions to execute the function

One of the initialisation functions (e.g. MPI6_OpenTcpIp, etc.) must have been completed
successfully.

Brief description

The MPI6_ChangeProtocolTypeForV5Functions function can be used to convert the old read
and write functions of ComDrvS7 version V5 to the new, faster protocol. This function is
executed once after the initialisation functions, where the parameter TakeV6Protocol must have
the value 1. This enables the users of older ComDrvS7 versions to benefit from the innovations
of ComDrvS7 V6.

Description of the parameters

Argument C-Type Description

Handle INT The handle of the communication instance,
which is being accessed (not required for the
.Net wrapper class).

TakeV6Protocol BYTE When the value 1 is transferred, the new
protocol will be used, even by the old read and
write functions (e.g.
MPI_A_ReadMerkerByte). If the function is
called when the parameter has a value of 0,
the old functions will be used.

Error WORD* If the function returns ‘0’, an error has
occurred during execution. In this case, the
Error parameter contains an error value.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 126

Example

The example below reads clock memories MB0 to MB99 with the old ComDrvS7 function.
Before issuing the call to the MPI_A_ReadMerkerByte function, a call to the function
MPI6_ChangeProtocolTypeForV5Functions changes the procedure to the new protocol type.

The example assumes that one of the initialisation functions (e.g. MPI6_OpenTcpIp) was
completed successfully. Similarly, the function MPI6_ConnectToPLC must have been
executed without errors. The action may be followed by others. Executing the function
MPI6_CloseCommunication terminates communications and eliminates the instance. In the
same way as it was shown in the example of the MPI6_ReadByte function.

.

.

.
 char ErrorString[255]={0};
 WORD Error=0;
 //Auf neues V6-Protokoll umstellen
 BYTE TakeV6Protocol=1;
 //
 if (! MPI6_ChangeProtocolTypeForV5Functions(MPIHandleV6,
 TakeV6Protocol, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
 }//end if
 //
 BYTE ByteStatusBuffer[100];
 //Call the old function as usual, the new protocol will be used
 //automatically
 if (! MPI_A_ReadMerkerByte(MPIHandleV6, 0, 100, ByteStatusBuffer,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandleV6, ErrorString, Error);
 MessageBox(ApplHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 MessageBox(ApplHandle, "Daten wurden gelesen.", "",
 MB_ICONINFORMATION);
 }//end else
.
.
.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 127

6.55 The function: MPI6_GetVersionComDrvS7

Conditions to execute the function

None.

Brief description

The MPI6_GetVersionComDrvS7 function returns the version number of the ComDrvS7 DLL as
a string. This means that the version in used can easily be checked.

Description of the parameters

Argument C-Type Description

VersionStr char* String with the version number of the form
"ComDrvS7 V6.XX"

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

6.56 The function: MPI_A_RealFromByteBuffer or
MPI6_RealFromByteBuffer

Brief description

The MPI_A_RealFromByteBuffer function assembles a real number from a byte buffer. The
function can be used when a real number was read from a DB using the ReadDBByte function.

Description of the parameters

Argument C-Type Description

RealValue float* The real number, which was determined from
the first 4 bytes of the buffer.

ByteBuffer BYTE* The buffer whose first 4 bytes contain a real
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note
The real number is assembled from ByteBuffer bytes [0], ByteBuffer [1], ByteBuffer [2] and
ByteBuffer [3].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 128

6.57 The function: MPI_A_RealFromWordBuffer or
MPI6_RealFromWordBuffer

Brief description

The MPI_A_RealFromWordBuffer function assembles a real number from a WORD buffer. The
function can be used when a real number was read from a DB using the ReadDBWort function.

Description of the parameters

Argument C-Type Description

RealValue float* The real number, which was determined from
the first 2 words of the buffer.

WordBuffer WORD* The buffer whose first 2 words contain a real
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The real number is assembled from the words WordBuffer[0] and WordBuffer[1].

6.58 The function: MPI_A_IntFromByteBuffer or
MPI6_IntFromByteBuffer

Brief description

The MPI_A_IntFromByteBuffer function assembles an INT (16-Bit) number from a BYTE buffer.
The function can be used when an Int number was read from a DB using the ReadDBByte
function.

Description of the parameters

Argument C-Type Description

IntValue short* The INT number, which was determined from
the first 2 bytes of the buffer.

ByteBuffer BYTE* The buffer whose first 2 bytes contain an Int
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The Int number is assembled from ByteBuffer bytes [0] and ByteBuffer [1].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 129

6.59 The function: MPI_A_IntFromWordBuffer oder
MPI6_IntFromWordBuffer

Brief description

Die Funktion MPI_A_IntFromWordBuffer setzt eine Int-Zahl (16-Bit) aus einem WORD-Buffer
zusammen. Die Funktion kann z.B. eingesetzt werden, wenn eine Int-Zahl aus einem DB
ausgelesen wurde und dabei die Funktion ReadDBWort zum Einsatz kam.

Description of the parameters

Argument C-Type Description

IntValue short* Die Int-Zahl (16-Bit) welche aus dem ersten
Wort des Buffers ermittelt wurde.

WordBuffer WORD* Der Buffer dessen erstes Wort eine Int-Zahl
enthält.

Function return BOOL Wurde die Funktion erfolgreich ausgeführt, so
wird der Wert '1' (TRUE) geliefert. Bei einem
Fehler ist der Rückgabewert '0' (FALSE).

Anmerkung

Die Int-Zahl wird aus dem Wort WordBuffer[0] ermittelt.

6.60 The function: MPI_A_DIntFromByteBuffer oder
MPI6_DIntFromByteBuffer

Brief description

The MPI_A_DIntFromByteBuffer assembles a DIn (32-bit) number from a BYTE buffer. The
function can be used when a DInt number was read from a DB using the ReadDBByte function.

Description of the parameters

Argument C-Type Description

DIntValue int* The DInt number, which was determined from
the first 4 bytes of the buffer.

ByteBuffer BYTE* The buffer with the first 4 bytes containing an
DInt number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The DInt number is determined from the the bytes ByteBuffer[0], ByteBuffer[1], ByteBuffer[2]
and ByteBuffer[1].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 130

6.61 The function: MPI_A_DIntFromWordBuffer or
MPI6_DIntFromWordBuffer

Brief description

The MPI_A_DIntFromWordBuffer function assembles a DInt (32-bit) number from a WORD
buffer. he function can be used when a DInt number was read from a DB using the
ReadDBWort function.

Description of the parameters

Argument C-Type Description

DIntValue int* The DINT number, which was determined
from the first 2 words of the buffer.

WordBuffer WORD* The buffer whose first 2 words contain a DInt
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The DInt number is assembled from the words WordBuffer[0] and WordBuffer[1].

6.62 The function: MPI_A_RealToWordBuffer or
MPI6_RealToWordBuffer

Brief description

The MPI_A_RealToWordBuffer function saves a real number into a WORD buffer. The function
can be used when a real number must be saved in a DB using the function WriteDBWort.

Description of the parameters

Argument C-Type Description

RealValue float The real number that is written to the first two
words of the buffer.

WordBuffer WORD* The buffer whose first 2 words contain the real
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The real number is saved to the words WordBuffer[0] and WordBuffer[1].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 131

6.63 The function: MPI_A_RealToByteBuffer or
MPI6_RealToByteBuffer

Brief description

The function MPI_A_RealToByteBuffer saves a real number in a BYTE buffer. The function can

be used when a real number must be saved in a DB using the function WriteDBByte.

Description of the parameters

Argument C-Type Description

RealValue float The real number that is written to the first 4
bytes of the buffer.

ByteBuffer BYTE* The buffer whose first 4 bytes contain the real
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The real number is saved to the bytes ByteBuffer[0], ByteBuffer[1], ByteBuffer[2] and
ByteBuffer[3].

6.64 The function: MPI_A_IntToByteBuffer or MPI6_IntToByteBuffer

Brief description

The MPI_A_IntToByteBuffer function writes an Int (16-bit) number to a BYTE buffer. The
function can be used when an Int number must be saved in a DB using the function
WriteDBByte.

Description of the parameters

Argument C-Type Description

IntValue short The Int number that is written to the first 2
bytes of the buffer.

ByteBuffer BYTE* The buffer whose first 2 bytes contain the Int
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The Int number is saved to bytes ByteBuffer[0] and ByteBuffer[1].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 132

6.65 The function: MPI_A_DIntToByteBuffer or
MPI6_DIntToByteBuffer

Brief description

The MPI_A_DIntToByteBuffer function writes a DInt (32-Bit) number to a BYTE buffer. The
function can be used when a DInt number must be saved in a DB using the function
WriteDBByte.

Description of the parameters

Argument C-Type Description

DIntValue int The DInt number that is written to the first 4
bytes of the buffer.

ByteBuffer BYTE* The buffer whose first 4 bytes contain the DInt
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The DInt number is saved to bytes ByteBuffer[0], ByteBuffer[1], ByteBuffer[2] and
ByteBuffer[3].

6.66 The function: MPI_A_DIntToWordBuffer oder
MPI6_DIntToWordBuffer

Brief description

The MPI_A_DIntToWordBuffer function writes a DInt (32-bit) number to a WORD buffer. The
function can be used when a DInt number must be saved in a DB using the function
WriteDBByte.

Description of the parameters

Argument C-Type Description

DIntValue int The DInt number that is written to the first 2
bytes of the buffer.

WordBuffer WORD* The buffer whose first 2 bytes contain the DInt
number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Note

The DInt number is written to the words WordBuffer[0] and WordBuffer[1].

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 133

6.67 The function: MPI6_BcdToDecimal

Brief description

The MPI6_BcdToDecimal function converts a BCD number to a decimal number. The BCD
number must be in the range 0-99.

Description of the parameters

Argument C-Type Description

Bcd BYTE BCD number in the range 0-99

Dec BYTE* The returned decimal number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

6.68 The function: MPI6_DecimalToBcd

Brief description

The MPI6_DecimalToBcd function converts a decimal number to a BCD number. The decimal
number must be in the range 0-99.

Description of the parameters

Argument C-Type Description

Dec BYTE Decimal number in the range 0-99

BCD BYTE* The returned BCD number.

Function return BOOL If the function was executed successfully, a
value '1'(TRUE) is returned. When an error
has occurred, the returned value is '0'
(FALSE).

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 134

7 Accessing several nodes using a serial port.

The example below is intended to show how two CPUs that are located on an MPI network can
be accessed via a serial interface.
Here it must be noted that communication instances that share a communication resource must
never be processed in different threads. The functions of the communication instances must be
processed in a single thread, one after the other.

7.1 Executing the initialisation

To start with, the initialisation must be executed for each connection.
The respective variables are shown below. The interfacing parameters are available once only,
because the baud rate is defined during the first initialisation. If the second initialisation is
executed with the same COM port but with different interfacing parameters (e.g. a different
baud rate), then the second set of definitions have no effect because the port has already been
opened and configured.

int ComNr=2; //COM2 port
long BaudRate=38400; //baud Rate
BYTE PGMPIAdresse=0; //MPI address of the DLL application = 0
BYTE HoechsteMPI=31; //highest address permitted in network = 31
bool SchnittstelleWarSchonAllokiert=false;
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
//Variables für Kommu1
int MPIHandle_1=-1; //handle of the first communication instance
BYTE AGMPIAdresse_1=10; //the MPI address of the first CPU
bool Fehler_1=false;
//Variables für Kommu2
int MPIHandle_2=-1; //handle of the second communication instance
BYTE AGMPIAdresse_2=11; //the MPI address of the second CPU
bool Fehler_2=false;
///////////////////////////
//establish connection 1
if (! MPI6_OpenRS232(&MPIHandle_1, ComNr, BaudRate,
 PGMPIAdresse, HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "Kommu 1",
 MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Initialisation 1 was successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 135

//establish connection 2
if (! MPI6_OpenRS232(&MPIHandle_2, ComNr, BaudRate,
 PGMPIAdresse, HoechsteMPI,
 &SchnittstelleWarSchonAllokiert,
 &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "Kommu 2",
 MB_ICONEXCLAMATION);
 //close commu 1
 MPI6_CloseCommunication(MPIHandle_1, &Error);
 return;
}//end if
MessageBox(AppHandle, "Einleitung 2 war erfolgreich.", "",
 MB_ICONINFORMATION);

Please note that different MPI handles are transferred during the initialisation. These handles
are used to specify the different communication instances.
The second call to the function "MPI6_OpenRS232" returns the parameter
"SchnittstelleWarSchonAllokiert" with the value 'true'. This is because the COM2 port was
already opened with the first initialisation of the first communication instance.

7.2 Establish communications with the CPUs

Now, the two communication instances can establish the connection with the respective CPU.
This is done with the "MPI6_ConnectToPLC" function. The function must be called for each
communication instance.

//establish communication 1
if (! MPI6_ConnectToPLC(MPIHandle_1, AGMPIAdresse_1, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "Commu 1",
 MB_ICONEXCLAMATION);
 Fehler_1=true;
}//end if
else
 MessageBox(AppHandle, "Commu 1 established successfully!!",
 "", MB_ICONINFORMATION);
//establish communication 2
if (! MPI6_ConnectToPLC(MPIHandle_2, AGMPIAdresse_2, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "Commu 2",
 MB_ICONEXCLAMATION);
 Fehler_2=true;
}//end if
else
 MessageBox(AppHandle, "Commu 2 established successfully!",
 "", MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 136

The accessed PLC MPI address and the MPI handles that are being used in the calls to both
"MPI6_ConnectToPLC" functions are different. For each communication instance is supposed
to access to a different CPU.

7.3 Read data from the CPU

Now that both communication instances have established communications with the respective
CPU, these can also read data from the CPUs. The communication instance with the handle
"MPIHandle_1" always accesses the CPU with the MPI address "AGMPIAdresse_1", while the
instance with the handle "MPIHandle_2" always accesses the MPI address "AGMPIAdresse_2".
The following listing shows this situation.

if (!Fehler_1){
 WORD LaengeInByte=0;
 //
 if (! MPI6_GetLengthDB(MPIHandle_1, 1, &LaengeInByte, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Commu1\nlength of DB1: %u byte",
 LaengeInByte);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if
if (!Fehler_2){
 WORD LaengeInByte=0;
 //
 if (! MPI6_GetLengthDB(MPIHandle_2, 1, &LaengeInByte, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Commu2\nlength of DB1: %u bytes",
 LaengeInByte);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if

This determines and returns the lengths of data blocks 1 in the respective CPU.
At this point further data may be read or written from/to the CPU. The order of read and write
operations is irrelevant.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 137

7.4 Termination of communications and removal of the
communication instances

To terminate communications with the CPUs, close the interface and remove the
communication instances you must issue a call to the "MPI6_CloseCommunication" function for
each communication instance.
If you only issue a call to the function of one communication instance, communication with the
other instance remains unaffected. The interface will only be released when the second
communication instance is removed by means of the "MPI6_CloseCommunication" function.

//terminate communication 1
if (! MPI6_CloseCommunication(MPIHandle_1, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communic. 1 terminated without errors.", "",
 MB_ICONINFORMATION);
//terminate communication 2
if (! MPI6_CloseCommunication(MPIHandle_2, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communic. 2 terminated without errors.", "",
 MB_ICONINFORMATION);

7.5 Notes on the example

If different serial interfaces were used in the example, e.g. COM1 for communication instance 1
and COM2 for communication instance 2, then the functions of the instances could also be
invoked in different threads. The advantage would be, that the instances do not block each
other.

The MPI adapter that must be used for a serial connection can usually manage multiple
connections (MHJ-MPI adapter 2 connections, SIEMENS adapter 4 connections). This means
that for a MHJ-MPI adapter a max. of 2 communication instances can access the
communication partners via an MPI adapter (and thus a serial interface).

If the connection is established via TCP/IP and a CPU with an integrated Ethernet port or an
Ethernet-CP, the communication instances are also independent of each other. The procedure
is the same as for the serial interface, with only the "MPI6_OpenTcpIp" being used instead of
"MPI6_OpenRS232".

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 138

8 Which conditions apply when using a MHJ-NetLink?

MHJ-NetLinks can manage at least two communications links. There is also the option to
access multiple-MHJ NetLinks with different IP addresses.
The example below addresses two CPUs that are linked via MPI using two-MHJ NetLinks. The
CPUs have the MPI address 10 and 12.

8.1 MHJ-NetLink configuration

Before a MHJ-NetLink can be accessed via the MPI-DLL, it must be configured using the
supplied MHJ-NetLink configurator. This can be used to change the IP address, the network
settings, etc. and save them in the MHJ-NetLink. When a MHJ-NetLink was configured, the
data is permanently available in the MHJ-NetLink, even after a power failure. This means that
the configuration is only required once, unless you want to change the data.
The MHJ-NetLink configurator is shown below. When the program was started, the button
"Determine MHJ-NetLinks" was activated.

Fig.: Configurator for MHJ-NetLink

This indicates that two-MHJ NetLinks were found on the network. In addition, we can see the IP
address of the MHJ-NetLinks.
We will initially configure the MHJ-NetLink with the IP address 172.16.130.84. In the list, select
this unit and press the button "Configure the selected MHJ-NetLink". If the MHJ-NetLink had
the IP address 0.0.0.0, i.e. as delivered, a dialog would appear where the IP address must be
specified. Then the dialog shown below will appear:

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 139

Fig.: The configuration dialog

Here you can enter the network settings, the PG-MPI address, etc.
In the example, the bus-profile "MPI" is selected, which is the default setting. Furthermore, the
"MPI address PG/PC" is set to the value '1'. The MPI address of the CPU is not required.
Press the button "Save modified data to MHJ-NetLink". A message is displayed indicating that
the data was transferred to the MHJ-NetLink. The process is started if you confirm this
message with "Yes".
A message indicates that the data was saved to the MHJ-NetLink, whereupon you must turn off
the MHJ-NetLink. This is accomplished by removing and reinserting the NetLink from the PG
interface of the CPU.
Now you can quit from this dialog by means of the button "Save settings and close dialog".

The same procedure must now be performed on the MHJ-NetLink with the IP address
172.16.130.81. In the list, select this unit and press the button "Configure the selected
MHJ-NetLink". The dialog shown above is displayed, but with the other IP address. On this
dialog, you also select "MPI" as the bus-profile. The PG-MPI-address is set to the value '3 '.
Then you press the button "Save changed data in the MHJ-NetLink" and perform the steps
described above. At this point, you can leave the dialog via the button "Save settings and exit
the dialog."
When you have completed these steps, you can close the configurator with the button then
"Quit program".

Additional information on commissioning a MHJ-NetLink can be found in the Help function for
the software configuration.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 140

8.2 Executing the initialisation

As with a connection via RS232, the open function must also be called to establish a
connection via a MHJ-NetLink. However, in this case the "MPI6_OpenNetLink" should be used.
The following figure shows this situation:

BYTE HoechsteMPI=31; //highest address permitted in network = 31
WORD Error=0; //error variable
char ErrorString[255]={0};//error string to return the error
//Variables für Kommu1
char IPAdresseStr_1[50]={0};
int MPIHandle_1=-1; //handle of the first communication
BYTE PGMPIAdresse_1=1; //MPI address of the 1st communic.instance = 1
BYTE AGMPIAdresse_1=10; //the MPI address of the first CPU
bool Fehler_1=false;
//variables for Commu2
char IPAdresseStr_2[50]={0};
BYTE PGMPIAdresse_2=3; //MPI address of the 2nd communic.instance = 3
int MPIHandle_2=-1; //handle of the second communication instance
BYTE AGMPIAdresse_2=12; //the MPI address the second CPU
bool Fehler_2=false;
//
strcpy(IPAdresseStr_1, "172.16.130.84");
strcpy(IPAdresseStr_2, "172.16.130.81");
///////////////////////////
//establish connection 1
if (! MPI6_OpenNetLink(&MPIHandle_1, IPAdresseStr_1,
 PGMPIAdresse_1,
 HoechsteMPI, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 return;
}//end if
MessageBox(AppHandle, "Einleitung 1 war erfolgreich.", "",
 MB_ICONINFORMATION);
//establish connection 2
if (! MPI6_OpenNetLink(&MPIHandle_2, IPAdresseStr_2,
 PGMPIAdresse_2,
 HoechsteMPI, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 //
 MPI_A_KommuBeenden(MPIHandle_1, &Error);
 return;
}//end if
MessageBox(AppHandle, "Initialisation 2 was successful.", "",
 MB_ICONINFORMATION);

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 141

8.3 Establish communications

The other functions do not distinguish themselves from other connections (e.g. NetLink PRO,
TCP/IP or RS232). This means that the "MPI6_ConnectToPLC" function is called for each
communication instance stating the respective AG-MPI address (for TCP/IP this would always
be set to 2).

//establish communication 1
if (! MPI6_ConnectToPLC(MPIHandle_1, AGMPIAdresse_1, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 Fehler_1=true;
}//end if
else {
 MessageBox(AppHandle, "Communic. 1 established successfully!",
 "", MB_ICONINFORMATION);
}//end else
//establish communication 2
if (! MPI6_ConnectToPLC(MPIHandle_2, AGMPIAdresse_2, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 Fehler_2=true;
}//end if
else {
 MessageBox(AppHandle, "Communic. 2 established successfully!",
 "", MB_ICONINFORMATION);
}//end else

8.4 Read data

Now the data must be read from the CPUs. The access functions used here are also
independent of the connection resource. As in the previous example, the length of DB1 will be
determined in the respective CPU.

//read data
if (!Fehler_1){
 WORD LaengeInByte=0;
 //
 if (! MPI6_GetLengthDB(MPIHandle_1, 1, &LaengeInByte, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Commu1\nlength of DB1: %u byte",
 LaengeInByte);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if

if (!Fehler_2){

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 142

 WORD LaengeInByte=0;
 //
 if (! MPI6_GetLengthDB(MPIHandle_2, 1, &LaengeInByte, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
 }//end if
 else {
 char AusgabeStr[255]={0};
 wsprintf(AusgabeStr, "Kommu2\nlength of DB1: %u byte",
 LaengeInByte);
 MessageBox(AppHandle, AusgabeStr, "", MB_ICONINFORMATION);
 }//end else
}//end if

At this point further data may be read or written from/to the CPU. The order of read and write
operations is irrelevant.

8.5 Terminate communications

If you want to terminate communications with the respective CPU, you can accomplish this
using the "MPI6_CloseCommunication" function. The communication resource is released
simultaneously and the communication instance eliminated.

//terminate communication 1
if (! MPI6_CloseCommunication(MPIHandle_1, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_1, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Communic. 1 terminated without errors.", "",
 MB_ICONINFORMATION);
//terminate communication 2
if (! MPI6_CloseCommunication(MPIHandle_2, &Error)){
 //display the error(s)
 MPI_A_GetDLLError(MPIHandle_2, ErrorString, Error);
 MessageBox(AppHandle, ErrorString, "", MB_ICONEXCLAMATION);
}//end if
MessageBox(AppHandle, "Kommunikation 2 ohne Fehler beendet.", "",
 MB_ICONINFORMATION);

8.6 Notes on the example

Since different serial interfaces were used in the example (two MHJ-NetLinks), the functions of
the respective communication instance could also be invoked in different threads. The
advantage would be, that the communication instances do not block each other.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 143

9 Which conditions apply when using a MHJ-NetLink PRO?

A NETLink PRO enables communications from TCP/IP on the PC side to a MPI or DP interface
on the CPU. In this case, the MPI/DP network supports all baud rates up to 12 Mbaud. The
NETLink PRO can manage at least 4 PC connections.

9.1 Configuration of a NetLink PRO

Before a NetLink PRO can be accessed via the ComDrvS7, it must be configured using the
supplied NetLink PRO configurator. This can be used to change the IP address, the network
settings, etc. and save them in NetLink PRO. When a NetLink PRO was configured, the data is
permanently available in the NetLink PRO, even after a power failure. This means that the
configuration is only required once, unless you want to change the data.
The following figure shows the NETLink PRO configurator. When the program was started, the
button "Search for NETLink PRO" was activated.

Fig.: List of NETLink PRO units on the network

Now you can select the required NETLink Pro in the list and then press the button "Settings".
As a result of the dialog, "NETLink PRO settings" will be displayed where you can define
important communication parameters.

Fig.: NETLink PRO settings

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 144

Help on the individual parameters is available via the "Help" button.
If you have made the necessary adjustments, you can write them to the NETLink PRO with the
"Save in NETLink PRO" button.

9.2 The two initialisation functions of the NETLink PRO

There are two initialisation functions to establish a communication instance for a NETLink PRO.
These are the functions
MPI6_Open_NetLinkPro_TCP_AutoBaud
and
MPI6_Open_NetLinkPro_TCP_SelectBaud
The difference between the two functions is that the function
MPI6_Open_NetLinkPro_TCP_AutoBaud
does not require the baud rate on the MPI/DP network. During the initialisation, the NETLink
PRO attempts to determine and retrieve the baud rate that was defined for the bus. The
disadvantage of this version is the time that is required for the determination of the baud rate,
because this may take a few seconds. The initialisation process is extended by this time.

If the baud rate is available, the function
MPI6_Open_NetLinkPro_TCP_SelectBaud
should be used, since this assigns the baud rate and eliminates the time required by the
determination of the baud rate.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 145

10 What conditions must be considered when using a
SIMATIC®-NET?

SIMATIC®-NET is supported from ComDrvS7 version 4.

The condition is that the SIMATIC? NET driver was installed on the PC. This driver is installed
on the PC, for example, when the Simatic?-Manager (from V5.1), the driver for the
SIEMENS-USB adapter or the Teleservice V6 are installed. You must select the interface to be
used here in the "PG/PC interface configuration" dialog. You can access this dialog by means
of the file "s7epatsx.exe" in the Windows System32 directory. This means, for example, that the
Siemens USB-MPI adapter, the CP5511 or CP5612 may be selected.
The selected interface and the respective settings will be used by ComDrvS7 if the initialisation
is invoked via the MPI6_Open_SimaticNet function.

Besides ComDrvS7, the Siemens software products can continue to access the CPU, provided
that the communication resources of the CPU have not been exhausted. It is thus possible, for
example, that your application accesses a CPU with ComDrvS7 (using SIMATIC®-NET) while it
is being accessed simultaneously via the Simatic®-Manager.

SIMATIC®-NET is not supported from ComDrvS7 64-Bit.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 146

11 Remote access procedure via telephone line using ComDrvS7

As of ComDrvS7 version 4, the Siemens Teleservice (from version 6) can be used for remote
access purposes via the telephone line.

Any kind of modem may be employed on the PC. The system side supports i.e. the Siemens
Teleservice Adapter II.
The figure below shows the necessary components with their names:

On the PC the Siemens Teleservice from V6 must be installed. The PC is connected to the
telephone line via a modem. On the system side the Siemens Teleservice Adapter II may be
used. In the ComDrvS7 the communication path SIMATIC®-NET must be used, i.e. the
initialisation function MPI6_Open_SimaticNet must be called. The interface in the
SIMATIC®-NET driver of the TS-Adapter II that is used in the example is set to "TS Adapter".
This also enables routing.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 147

12 General notes on the ComDrvS7-DLL

12.1 What must be considered when a CPU is accessed by multiple
communication instances?

Communication errors will occur when multiple communication instances access the
information functions of a CPU. A communication error will result if, for example, several
instances request the operating mode position in immediate succession or even in different
threads but essentially in "parallel". The CPU must assemble the answer to such a request in a
virtual process but it is not always possible to do this.
Status queries can be invoked in parallel but only a limited quantity. This number depends on
the CPU type. The number is available from the CPU manual.

12.2 What must be considered when the next ComDrvS7 DLL or
other applications are executed on the PC?

If additional applications are executed along with the ComDrvS7, then the functions of the
ComDrvS7 must be invoked in one or more threads. It is important that the threads have the
priority "THREAD_PRIORITY_TIME_CRITICAL" so that the response times on the MPI/DP bus
or via TCP/IP are met.

12.3 When is it possible to issue calls to the functions of the
individual communication instances in different threads?

When multiple communication instances are being used, i.e., a connection is established with
multiple CPUs while different communication resources are being used, then the condition is
satisfied, that the functions of the individual instances may be called in different threads. Each
thread must possess the priority "THREAD_PRIORITY_TIME_CRITICAL".
It is, however, not possible to call functions of a communication instance from different threads.

When a communication resource is used by multiple instances, e.g. when 2 CPUs are being
accessed via the COM1 port, then the functions of both instances must be executed in a single
thread in succession.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 148

13 Error messages

The following list contains the possible error numbers. One of these values may be included in

the "error" variable of a DLL function when the value returned by this function is '0 '(FALSE).

The functions MPI_A_GetDLLError, MPI_A_GetDLLErrorEng, or MPI6_GetDLLError
MPI6_GetDLLErrorEng can be used to retrieve a descriptive string (null terminated) for the
respective error.

Value
(dec)

Description

54.273 The requested information is not available on the PLC!

53.825 Protection level error of the CPU!

53.409 Action not possible due to the protection level!

53.377 Select the operating mode that is necessary for this function!

53.298 The parameters passed to the PLC are faulty!

33.794 Action cannot be executed because of an incorrect status of the PLC!

33.540 Message from the module. A resource bottleneck exists!

19.718 Temporary lack of resources in the PLC. Repeat the request.

16.997 The MPI address of the PG has already been allocated on the network!

16.949 The node address of a connected PLC is too high!

16.662 The partner refuses to communicate!

1.046 PLC is not a S7-1500

1.045 PLC is not a LOGO

1.044 PLC is not a S7-1200

1.043 Failure to configure the mode for the S7-1200® family

1.030 VM area is only possible with a LOGO!®

1.029 Function is not possible with a S7-1200®

1.028 Function is not possible with a LOGO!®

1.027 Function is only possible with the MICRO version of ComDrvS7

1.026 Function is not possible with the MICRO version of ComDrvS7

1.004 Function is only possible with the Extended version of ComDrvS7

1.003 Unknown block type!

1.002 DB0 not permitted!

1.001 This feature cannot be executed in the Lite version!

1.000 Error when creating a DLL instance!

733 The given handle is not valid.

732 With at least one block, the action is not possible.

731 Error while executing compress.

729 Error, because the WLD-file already exists.

728 Failure to configure the mode for the S7-1200® family

727 Incorrect position of the mode switch or the CPU is already in the required mode.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 149

726 The action is not possible in this mode.

725 The action is not possible in RUN mode.

724 The service is not supported by the CPU.

723 Number of bytes for the mix function is invalid.

722 Failed to accept the status data for the mix function.

721 Internal error mix function: Pointer number too high.

720 One or more control values are incorrect.

719 Die Anzahl der DBs in der WLD-Datei übersteigt den angegebenen
Max-Parameter.

718 The number of DBs in the WLD file exceeds the specified max-parameter.

717 WLD action: Block is not available in the CPU.

716 The DB already exists in the WLD. Cannot overwrite.

715 The file is not a correct WLD file.

714 WLD action: Failed to test whether the block to be transferred is already present in
the CPU.

713 WLD action: Block is already available in the CPU.

712 WLD file does not exist.

711 Block is not available in the WLD file.

710 WLD action: File operation error.

709 WLD action: Block is too large for the action.

708 Status of one or more operands cannot be delivered. Possible reason: One or
more operands are not available in the CPU.

707 The specified operand is not permitted for this function.

706 One or more operands cannot be controlled. Possible reason: One or more
operands are not available in the CPU.

614 NetLink PRO: Cannot determine the baud rate on the bus!

604 Status data of one or more requested operands not available.

603 Fault when evaluating the status data.

602 Fault - password contains too many characters.

601 Fault when converting the password.

518 An unknown error has occurred during the initialisation!

517 Fault occurred when evaluating accessible nodes!

513 Fault when closing the interface!

512 Fault when opening the interface!

511 Errors when evaluating the info-data!

510 The parameters passed are faulty!

509 Communication error has occurred!

508 Memory error. Memory could not be allocated!

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 150

500 Demo limit reached. This message appears only in the demo version of the DLL
when the area of the demo version has been exceeded. In this case, please note
the additional information enclosed with demo version on the permitted operand
areas.
Obsolete from version 6.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 151

14 Access to operands of a LOGO!® from SIEMENS

In the help-function of the LOGOSoft-Comfort-software you find the tables with the mappings
between I/O and VM (Variable Memory) addresses of the LOGO!®.
Open the help-function and search for the page named "Parameter VM Mapping".
Maybe in newer devices (higher 0BA8) the mapping is changing, so take a look at this page, to
get the latest informations.

14.1 Digital inputs

The digital inputs from a LOGO!® can be read directly.
You can use the read functions (e. g. MPI6_ReadByte) with the operand area "I".
The writing of inputs is not possible.

14.1.1 Addressing the digital inputs

In the following table you find the addresses for the inputs I1 to I24.

LOGO Inputs Addressing in ComDrvS7
0BA7/0BA8

I1 I0.0

I2 I0.1

I3 I0.2

I4 I0.3

I5 I0.4

I6 I0.5

I7 I0.6

I8 I0.7

I9 I1.0.

I10 I1.1

I11 I1.2

I12 I1.3

I13 I1.4

I14 I1.5

I15 I1.6

I16 I1.7

... ...

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 152

14.2 Analog inputs

The analog inputs from a LOGO!® can be read via the VM area.
You can use the read functions (e. g. MPI6_ReadWord) with the operand area "V".

14.2.1 Addressing the analog inputs

In the following table you find the addresses for the inputs AI1 to AI8.

LOGO analog input Address ComDrvS7
0BA7

Address ComDrvS7
0BA8

AI1 VW926 VW1032

AI2 VW928 VW1034

AI3 VW930 VW1036

AI4 VW932 VW1038

AI5 VW934 VW1040

AI6 VW936 VW1042

AI7 VW938 VW1044

AI8 VW940 VW1046

AI8-AI16 - VW1048-VW1062

Example 0BA7:

If you want to read the AI6, you have to specify the address 936 and the operand area "V".

Example 0BA8:

If you want to read the AI6, you have to specify the address 1042 and the operand area "V".

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 153

14.3 Digital outputs

The digital outputs from a LOGO!® can be read and write directly.
You can use the read and write functions (e. g. MPI6_ReadByte or MPI6_WriteByte) with the
operand area "Q".

14.3.1 Addressing the digital outputs

In the following table you find the addresses for the outputs Q1 to Q16.

LOGO Outputs Addressing in ComDrvS7
0BA7/0BA8

Q1 Q0.0

Q2 Q0.1

Q3 Q0.2

Q4 Q0.3

Q5 Q0.4

Q6 Q0.5

Q7 Q0.6

Q8 Q0.7

Q9 Q1.0.

Q10 Q1.1

Q11 Q1.2

Q12 Q1.3

Q13 Q1.4

Q14 Q1.5

Q15 Q1.6

Q16 Q1.7

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 154

14.4 Analog ouputs

The analog outputs from a LOGO!® can be read and write via the VM area.
You can use the read and write functions (e. g. MPI6_ReadWord or MPI6_WriteWord) with the
operand area "V".

14.4.1 Addressing the analog ouputs

In the following table you find the addresses for the outputs.

LOGO analog output Address ComDrvS7
0BA7

Address ComDrvS7
0BA8

AQ1 VW944 VW1072

AQ2 VW946 VW1074

AQ3-AQ16 - VW1076-VW1102

14.5 Digital Flags

The digital flags from a LOGO!® can be read and write via the VM area.
You can use the read and write functions (e. g. MPI6_ReadByte or MPI6_WriteByte) with the
operand area "V".

14.5.1 Addressing the digital flags

In the following table you find the addresses for the flags M1 to M27.

LOGO digital flag Address ComDrvS7
0BA7

Address ComDrvS7
0BA8

M1 V948.0 V1104.0

M2 V948.1 V1104.1

M3 V948.2 V1104.2

M4 V948.3 V1104.3

M5 V948.4 V1104.4

M6 V948.5 V1104.5

M7 V948.6 V1104.6

M8 V948.7 V1104.7

...

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 155

14.6 Analog Flags

The analog flags from a LOGO!® can be read and write via the VM area.
You can use the read and write functions (e. g. MPI6_ReadWord or MPI6_WriteWord) with the
operand area "V".

14.6.1 Addressing the analog flags

In the following table you find the addresses for the analog flags.

LOGO analog flags Address ComDrvS7
0BA7

Address ComDrvS7
0BA8

AM1 VW952 VW1118

AM2 VW954 VW1120

AM3 VW956 VW1122

AM4 VW958 VW1124

AM5 VW960 VW1126

AM6 VW962 VW1128

AM7 VW964 VW1130

AM8 VW966 VW1132

AM9 VW968 VW1134

AM10 VW970 VW1136

AM11 VW972 VW1138

AM12 VW974 VW1140

AM13 VW976 VW1142

AM14 VW978 VW1144

AM15 VW980 VW1146

AM16 VW982 VW1148

AM17-AM63 - VW1244

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 156

14.7 Analog and digitale network-inputs and network-outputs

In LOGO!® devices with ethernet interface (0BA7 and higher) you can use digitale and analoge
network-inputs and network-outputs.
These operands are adressed inside the VM area from byte address 0 to byte address 850.
In ComDrvS7 you can use the read and write functions (e. g. MPI6_ReadWord or
MPI6_WriteWord) with the operand area "V" to access these operands.

The access is possible with bit, byte, word and dword functions.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 157

15 Configuration of the LOGO's IP address

The LOGO!® (0BA7 or higher) must have an IP address to make it accessible via Ethernet. The
device must be accessible for the PC to use the LOGO programming software as well as
ComDrvS7. You may connect the LOGO controller directly to the network adapter of the PC or
via a network switch.

The example assumes that the PC with the programming software and ComDrvS7 has the IP
address 192.168.1.90. The LOGO controller should be located on the same subnet, and to
simplify matters, only in the last digit of the IP address differs. For this reason, the LOGO
controller will be set to the IP address 192.168.1.196. Please remember that this IP address
must not be occupied.
You can easily adjust the IP address and the subnet mask of the LOGO controller using the
LOGO’s display. To get to the menu of the LOGO, press the ESC key. Then, using the up and
down arrow keys, select menu item "Network" and confirm by pressing the OK button. Use OK
in the submenu to select the menu item "IP address". The current IP address will be visible.
Press the OK button again to use the arrow keys to select the individual addresses. As
mentioned, the example is set to the address 192.168.1.196. When this address was set, you
can accept it with the OK button.Now for the subnet mask. In the example this is set to
255.255.255.0. From the current position the subnet mask can be selected by pressing the
down arrow key and by pressing OK to start changing the subnet mask. When you have
selected 255.255.255.0, complete the entry with the OK button.For further information on
setting the IP addresses in the LOGO!®, please read the relevant sections in the help files of the
LOGO programming software or the manual of the LOGO controller.
Now the IP settings have been applied to the LOGO controller and you can return to the main
menu of LOGO by pressing the "ESC" button on the LOGO!®.

15.1 Special behaviors of a LOGO!® 0BA8 (and higher)

If you use a 0BA8 (or later), you have to note a special communication-behavior.
The 0BA8 closes a communication-channel after 5 seconds, when there is no
communication.

Example:
If you read/write operands every 8 seconds, you have to perform the following steps:
1. Execute MPI6_OpenTcpIp_Logo
2. Execute MPI6_ConnectToPLC
3. Read and write the operands
4. Execute MPI6_CloseCommunication

If you read operands in time-intervals of less than 5 seconds, the closing and reopening of the
communication-channel is not necessary.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 158

15.2 Configuration of the Ethernet connection by means of the
LOGO!® programming software

The next step is to execute menu item "Tools->Ethernet connections" in the LOGO
programming software. As a result, the dialog "Configure address and Connections" is
displayed. For the purposes of the current example, this is completed as follows:

Figure: "Configure address and Connections" dialog box

The IP address of the LOGO that will be addressed is entered into "Module Address->IP
address", i.e. in the example this is 192.168.1.196. If you enter this IP address, the subnet
mask is applied automatically. The next field is "Peer-to-Peer connections". Here it is necessary
to create a new Ethernet connection. For this purpose, you select "Ethernet Connections" and
press the right mouse key.

Figure: add a new Ethernet connection

Now you must select menu item "Add Connection". Then result is displayed as follows in the
dialog box:

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 159

Figure: new connection

Continue with a double-click on the new entry "Connection1". As a result, dialog "Connection1"
will be displayed where the options must be completed as follows:

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 160

Figure: connection settings

Enter the adjustments in the sequence that is shown in the figure. You can now quit from the
dialog box by clicking "OK".
Confirm the resulting dialog box "Configure address and connections" and quit by pressing OK.

Now the IP settings have been completed and you can transfer the settings to the LOGO!®.

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 161

16 Required settings in a PLC 1500® (and S7-1200® from firmware
version 4) from Siemens

To establish a connection between the PC and a PLC 1500 (and 1200 from firmwareversion 4)
via ComDrvS7 you have to make some PLC-settings. First you have to select the option "Permit
access with PUT/GET communication from remote partner (PLC, HMI, OPC ...)". You find this
option inside the PLC-properties, tab sheet "General", category "Protection".
The "highest" selectable access level is named "HMI access". There, a password for the
programming access is required. With this level, the changing of the PLC-blocks is protected
with this password

In the following picture you can see an example of the settings:

Documentation of ComDrvS7 V6.2X

MHJ-Software GmbH & Co. KG

Albert-Einstein-Str. 101 • 75015 Bretten • info@mhj.de

Page 162

